Classical Goldstone modes in long-range interacting systems
For a classical system with long-range interactions, a soft mode exists whenever a stationary state spontaneously breaks a continuous symmetry of the Hamiltonian. Besides that, if the corresponding coordinate associated to the symmetry breaking is periodic, then the same energy of the different stat...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2020-09, Vol.102 (3), p.032122-032122, Article 032122 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a classical system with long-range interactions, a soft mode exists whenever a stationary state spontaneously breaks a continuous symmetry of the Hamiltonian. Besides that, if the corresponding coordinate associated to the symmetry breaking is periodic, then the same energy of the different stationary states and finite N thermal fluctuations result in a superdiffusive motion of the center of mass for total zero momentum, that tends to a normal diffusion for very long times. As examples of this, we provide a two-dimensional self-gravitating system, a free electron laser, and the Hamiltonian mean-field (HMF) model. For the latter, a detailed theory for the motion of the center of mass is given. We also discuss how the coupling of the soft mode to the mean-field motion of individual particles may lead to strong chaotic behavior for a finite particle number, as illustrated by the HMF model. |
---|---|
ISSN: | 2470-0045 1539-3755 2470-0053 1550-2376 |
DOI: | 10.1103/PhysRevE.102.032122 |