Hippocampal CB1 Receptors Control Incidental Associations
By priming brain circuits, associations between low-salience stimuli often guide future behavioral choices through a process known as mediated or inferred learning. However, the precise neurobiological mechanisms of these incidental associations are largely unknown. Using sensory preconditioning pro...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2018-09, Vol.99 (6), p.1247-1259.e7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By priming brain circuits, associations between low-salience stimuli often guide future behavioral choices through a process known as mediated or inferred learning. However, the precise neurobiological mechanisms of these incidental associations are largely unknown. Using sensory preconditioning procedures, we show that type 1 cannabinoid receptors (CB1R) in hippocampal GABAergic neurons are necessary and sufficient for mediated but not direct learning. Deletion and re-expression of CB1R in hippocampal GABAergic neurons abolishes and rescues mediated learning, respectively. Interestingly, paired presentations of low-salience sensory cues induce a specific protein synthesis-dependent enhancement of hippocampal CB1R expression and facilitate long-term synaptic plasticity at inhibitory synapses. CB1R blockade or chemogenetic manipulations of hippocampal GABAergic neurons upon preconditioning affect incidental associations, as revealed by impaired mediated learning. Thus, CB1R-dependent control of inhibitory hippocampal neurotransmission mediates incidental associations, allowing future associative inference, a fundamental process for everyday life, which is altered in major neuropsychiatric diseases.
[Display omitted]
•Hippocampal CB1R is required for incidental associations leading to mediated learning•Incidental associations enhance hippocampal CB1R expression and inhibitory plasticity•CB1R-dependent control of hippocampal GABAergic cells controls mediated learning
Busquets-Garcia et al. suggest that cannabinoid CB1 receptors signaling in the hippocampus, a brain structure involved in memory processes, underlines the mammalian ability to associate randomly encountered stimuli, allowing future inferred memories and possibly explaining seemingly ungrounded responses toward certain cues. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/j.neuron.2018.08.014 |