Management intensity controls soil N2O fluxes in an Afromontane ecosystem
Studies that quantify nitrous oxide (N2O) fluxes from African tropical forests and adjacent managed land uses are scarce. The expansion of smallholder agriculture and commercial agriculture into the Mau forest, the largest montane forest in Kenya, has caused large-scale land use change over the last...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2018-05, Vol.624, p.769-780 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studies that quantify nitrous oxide (N2O) fluxes from African tropical forests and adjacent managed land uses are scarce. The expansion of smallholder agriculture and commercial agriculture into the Mau forest, the largest montane forest in Kenya, has caused large-scale land use change over the last decades. We measured annual soil N2O fluxes between August 2015 and July 2016 from natural forests and compared them to the N2O fluxes from land either managed by smallholder farmers for grazing and tea production, or commercial tea and eucalyptus plantations (n=18). Air samples from 5 pooled static chambers were collected between 8:00am and 11:30am and used within each plot to calculate the gas flux rates. Annual soil N2O fluxes ranged between 0.2 and 2.9kgNha−1yr−1 at smallholder sites and 0.6–1.7kgNha−1yr−1 at the commercial agriculture sites, with no difference between land uses (p=0.98 and p=0.18, respectively). There was marked variation within land uses and, in particular, within those managed by smallholder farmers where management was also highly variable. Plots receiving fertilizer applications and those with high densities of livestock showed the highest N2O fluxes (1.6±0.3kgN2O-Nha−1yr−1, n=7) followed by natural forests (1.1±0.1kgN2O-Nha−1yr−1, n=6); although these were not significantly different (p=0.19). Significantly lower fluxes (0.5±0.1kgNha−1yr−1, p |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2017.12.081 |