Corners and stable optimized domain decomposition methods for the Helmholtz problem

We construct a new Absorbing Boundary Condition (ABC) adapted to solving the Helmholtz equation in polygonal domains in dimension two. Quasi-continuity relations are obtained at the corners of the polygonal boundary. This ABC is then used in the context of domain decomposition where various stable a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2021-12, Vol.149 (4), p.779-818
Hauptverfasser: Després, B., Nicolopoulos, A., Thierry, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a new Absorbing Boundary Condition (ABC) adapted to solving the Helmholtz equation in polygonal domains in dimension two. Quasi-continuity relations are obtained at the corners of the polygonal boundary. This ABC is then used in the context of domain decomposition where various stable algorithms are constructed and analysed. Next, the operator of this ABC is adapted to obtain a transmission operator for the Domain Decomposition Method (DDM) that is well suited for broken line interfaces. For each algorithm, we show the decrease of an adapted quadratic pseudo-energy written on the skeleton of the mesh decomposition, which establishes the stability of these methods. Implementation within a finite element solver (GMSH/GetDP) and numerical tests illustrate the theory.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-021-01251-2