A generalised approach for identifying influential data in hydrological modelling

Influence diagnostics are used to identify data points that have a disproportionate impact on model parameters, performance and/or predictions, providing valuable information for use in model calibration. Regression-theory influence diagnostics identify influential data by combining the leverage and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news 2019-01, Vol.111, p.231-247
Hauptverfasser: Wright, David P., Thyer, Mark, Westra, Seth, Renard, Benjamin, McInerney, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Influence diagnostics are used to identify data points that have a disproportionate impact on model parameters, performance and/or predictions, providing valuable information for use in model calibration. Regression-theory influence diagnostics identify influential data by combining the leverage and the standardised residuals, and are computationally more efficient than case-deletion approaches. This study evaluates the performance of a range of regression-theory influence diagnostics on ten case studies with a variety of model structures and inference scenarios including: nonlinear model response, heteroscedastic residual errors, data uncertainty and Bayesian priors. A new technique is developed, generalised Cook's distance, that is able to accurately identify the same influential data as standard case deletion approaches (Spearman rank correlation: 0.93–1.00) at a fraction of the computational cost (
ISSN:1364-8152
1873-6726
DOI:10.1016/j.envsoft.2018.03.004