A generalised approach for identifying influential data in hydrological modelling
Influence diagnostics are used to identify data points that have a disproportionate impact on model parameters, performance and/or predictions, providing valuable information for use in model calibration. Regression-theory influence diagnostics identify influential data by combining the leverage and...
Gespeichert in:
Veröffentlicht in: | Environmental modelling & software : with environment data news 2019-01, Vol.111, p.231-247 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Influence diagnostics are used to identify data points that have a disproportionate impact on model parameters, performance and/or predictions, providing valuable information for use in model calibration. Regression-theory influence diagnostics identify influential data by combining the leverage and the standardised residuals, and are computationally more efficient than case-deletion approaches. This study evaluates the performance of a range of regression-theory influence diagnostics on ten case studies with a variety of model structures and inference scenarios including: nonlinear model response, heteroscedastic residual errors, data uncertainty and Bayesian priors. A new technique is developed, generalised Cook's distance, that is able to accurately identify the same influential data as standard case deletion approaches (Spearman rank correlation: 0.93–1.00) at a fraction of the computational cost ( |
---|---|
ISSN: | 1364-8152 1873-6726 |
DOI: | 10.1016/j.envsoft.2018.03.004 |