Energy and helicity fluxes in line-tied eruptive simulations
Context. Conservation properties of magnetic helicity and energy in the quasi-ideal and low- β solar corona make these two quantities relevant for the study of solar active regions and eruptions. Aims. Based on a decomposition of the magnetic field into potential and nonpotential components, magneti...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2020-04, Vol.636, p.A41 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context.
Conservation properties of magnetic helicity and energy in the quasi-ideal and low-
β
solar corona make these two quantities relevant for the study of solar active regions and eruptions.
Aims.
Based on a decomposition of the magnetic field into potential and nonpotential components, magnetic energy and relative helicity can both also be decomposed into two quantities: potential and free energies, and volume-threading and current-carrying helicities. In this study, we perform a coupled analysis of their behaviors in a set of parametric 3D magnetohydrodynamic (MHD) simulations of solar-like eruptions.
Methods.
We present the general formulations for the time-varying components of energy and helicity in resistive MHD. We calculated them numerically with a specific gauge, and compared their behaviors in the numerical simulations, which differ from one another by their imposed boundary-driving motions. Thus, we investigated the impact of different active regions surface flows on the development of the energy and helicity-related quantities.
Results.
Despite general similarities in their overall behaviors, helicities and energies display different evolutions that cannot be explained in a unique framework. While the energy fluxes are similar in all simulations, the physical mechanisms that govern the evolution of the helicities are markedly distinct from one simulation to another: the evolution of volume-threading helicity can be governed by boundary fluxes or helicity transfer, depending on the simulation.
Conclusions.
The eruption takes place for the same value of the ratio of the current-carrying helicity to the total helicity in all simulations. However, our study highlights that this threshold can be reached in different ways, with different helicity-related processes dominating for different photospheric flows. This means that the details of the pre-eruptive dynamics do not influence the eruption-onset helicity-related threshold. Nevertheless, the helicity-flux dynamics may be more or less efficient in changing the time required to reach the onset of the eruption. |
---|---|
ISSN: | 0004-6361 1432-0746 1432-0756 |
DOI: | 10.1051/0004-6361/202037548 |