A nonlinear Schrödinger equation with fractional noise

We study a stochastic Schrödinger equation with a quadratic nonlinearity and a space-time fractional perturbation, in space dimension d≤3d\leq 3. When the Hurst index is large enough, we prove local well-posedness of the problem using classical arguments. However, for a small Hurst index, even the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2021-06, Vol.374 (6), p.4375-4422
Hauptverfasser: Deya, Aurélien, Schaeffer, Nicolas, Thomann, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a stochastic Schrödinger equation with a quadratic nonlinearity and a space-time fractional perturbation, in space dimension d≤3d\leq 3. When the Hurst index is large enough, we prove local well-posedness of the problem using classical arguments. However, for a small Hurst index, even the interpretation of the equation needs some care. In this case, a renormalization procedure must come into the picture, leading to a Wick-type interpretation of the model. Our fixed-point argument then involves some specific regularization properties of the Schrödinger group, which allows us to cope with the strong irregularity of the solution.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8368