Perrhenate and pertechnetate complexation by an azacryptand in nitric acid medium
Technetium is present as the pertechnetate anion in spent nuclear fuel solutions, and its extraction by several extractant systems is a major problem for the liquid-liquid extraction processes used to separate uranium and plutonium. To prevent technetium extraction into the organic phase, a complexi...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2020-02, Vol.49 (5), p.1446-1455 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Technetium is present as the pertechnetate anion in spent nuclear fuel solutions, and its extraction by several extractant systems is a major problem for the liquid-liquid extraction processes used to separate uranium and plutonium. To prevent technetium extraction into the organic phase, a complexing agent may be added to the aqueous nitric acid phase to selectively bind the pertechnetate anion. In the present study, liquid-liquid extraction experiments reveal that technetium distribution ratios are considerably lowered with addition of an azacryptand, which is a good receptor for pertechnetate anion recognition. This ligand is able to overcome the Hofmeister bias and selectively bind techetium in nitric acid solution. Coordination studies using infrared and Raman spectoscopies and DFT calculations show the formation of an inclusion complex with hydrogen bonds stabilizing the oxo-anion within the cavity. For the first time, the cage molecules are studied for an extraction process.
Azacryptand addition in nitric acid medium for the recognition of the pertechnetate anion for extraction studies. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c9dt04314d |