Evidence of the Reduced Abundance of Proline cis Conformation in Protein Poly Proline Tracts
Proline is found in a cis conformation in proteins more often than other proteinogenic amino acids, where it influences structure and modulates function, being the focus of several high-resolution structural studies. However, until now, technical and methodological limitations have hampered the site...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-04, Vol.142 (17), p.7976-7986 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proline is found in a cis conformation in proteins more often than other proteinogenic amino acids, where it influences structure and modulates function, being the focus of several high-resolution structural studies. However, until now, technical and methodological limitations have hampered the site-specific investigation of the conformational preferences of prolines present in poly proline (poly-P) homorepeats in their protein context. Here, we apply site-specific isotopic labeling to obtain high-resolution NMR data on the cis/trans equilibrium of prolines within the poly-P repeats of huntingtin exon 1, the causative agent of Huntington’s disease. Screening prolines in different positions in long (poly-P11) and short (poly-P3) poly-P tracts, we found that, while the first proline of poly-P tracts adopts similar levels of cis conformation as isolated prolines, a length-dependent reduced abundance of cis conformers is observed for terminal prolines. Interestingly, the cis isomer could not be detected in inner prolines, in line with percentages derived from a large database of proline-centered tripeptides extracted from crystallographic structures. These results suggest a strong cooperative effect within poly-Ps that enhances their stiffness by diminishing the stability of the cis conformation. This rigidity is key to rationalizing the protection toward aggregation that the poly-P tract confers to huntingtin. Furthermore, the study provides new avenues to probe the structural properties of poly-P tracts in protein design as scaffolds or nanoscale rulers. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.0c02263 |