Dispersive estimate for quasi-periodic Schrödinger operators on 1-d lattices
Consider the one-dimensional discrete Schrödinger operator Hθ:(Hθq)n=−(qn+1+qn−1)+V(θ+nω)qn,n∈Z, with ω∈Rd Diophantine, and V a real-analytic function on Td=(R/2πZ)d. For V sufficiently small, we prove the dispersive estimate: for every ϕ∈ℓ1(Z),(1)‖e−itHθϕ‖ℓ∞≤K0|lnε0|a(lnln(2+〈t〉))2d〈t〉13‖ϕ‖ℓ1,〈t...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2020-06, Vol.366, p.107071, Article 107071 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the one-dimensional discrete Schrödinger operator Hθ:(Hθq)n=−(qn+1+qn−1)+V(θ+nω)qn,n∈Z, with ω∈Rd Diophantine, and V a real-analytic function on Td=(R/2πZ)d. For V sufficiently small, we prove the dispersive estimate: for every ϕ∈ℓ1(Z),(1)‖e−itHθϕ‖ℓ∞≤K0|lnε0|a(lnln(2+〈t〉))2d〈t〉13‖ϕ‖ℓ1,〈t〉:=1+t2, with a and K0 two absolute constants and ε0 an analytic norm of V. The estimate holds for every θ∈Td. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2020.107071 |