Well-Posedness of the Kadomtsev–Petviashvili Hierarchy, Mulase Factorization, and Frölicher Lie Groups

We recall the notions of Frölicher and diffeological spaces, and we build regular Frölicher Lie groups and Lie algebras of formal pseudo-differential operators in one independent variable. Combining these constructions with a smooth version of Mulase’s deep algebraic factorization of infinite-dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2020-06, Vol.21 (6), p.1893-1945
Hauptverfasser: Magnot, Jean-Pierre, Reyes, Enrique G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recall the notions of Frölicher and diffeological spaces, and we build regular Frölicher Lie groups and Lie algebras of formal pseudo-differential operators in one independent variable. Combining these constructions with a smooth version of Mulase’s deep algebraic factorization of infinite-dimensional groups based on formal pseudo-differential operators, we present two proofs of the well-posedness of the Cauchy problem for the Kadomtsev–Petviashvili (KP) hierarchy in a smooth category. We also generalize these results to a KP hierarchy modelled on formal pseudo-differential operators with coefficients which are series in formal parameters, we describe a rigorous derivation of the Hamiltonian interpretation of the KP hierarchy, and we discuss how solutions depending on formal parameters can lead to sequences of functions converging to a class of solutions of the standard KP-II equation.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-020-00896-3