Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin

Requirements on material properties for extrusion-based additive manufacturing mostly focus on the rheological behavior of the cementitious material being printed. The layer interface strength is therefore often considered to result from a proper mixing or remixing of two consecutive layers induced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cement and concrete research 2019-09, Vol.123, p.105787, Article 105787
Hauptverfasser: Keita, Emmanuel, Bessaies-Bey, Hela, Zuo, Wenqiang, Belin, Patrick, Roussel, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Requirements on material properties for extrusion-based additive manufacturing mostly focus on the rheological behavior of the cementitious material being printed. The layer interface strength is therefore often considered to result from a proper mixing or remixing of two consecutive layers induced by the deposition process itself and therefore from the material thixotropic behavior. We show however here that, in the case of smooth interfaces, the drop in interface strength finds its origin in the water evaporation from the free surface occurring during the short time interval between two successive layers. Our results and their analysis within the framework of drying physics suggest that the water loss is localized in a dry region at the free surface leading to an incomplete cement hydration and high local porosity. We moreover compare here various experimental protocols allowing for the assessment of a drop in bond strength.
ISSN:0008-8846
1873-3948
DOI:10.1016/j.cemconres.2019.105787