On the Density of Sets Avoiding Parallelohedron Distance 1

The maximal density of a measurable subset of R n avoiding Euclidean distance 1 is unknown except in the trivial case of dimension 1. In this paper, we consider the case of a distance associated to a polytope that tiles space, where it is likely that the sets avoiding distance 1 are of maximal densi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2019-10, Vol.62 (3), p.497-524
Hauptverfasser: Bachoc, Christine, Bellitto, Thomas, Moustrou, Philippe, Pêcher, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The maximal density of a measurable subset of R n avoiding Euclidean distance 1 is unknown except in the trivial case of dimension 1. In this paper, we consider the case of a distance associated to a polytope that tiles space, where it is likely that the sets avoiding distance 1 are of maximal density 2 - n , as conjectured by Bachoc and Robins. We prove that this is true for n = 2 , and for the Voronoi regions of the lattices A n , n ≥ 2 .
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-019-00113-x