On the Density of Sets Avoiding Parallelohedron Distance 1
The maximal density of a measurable subset of R n avoiding Euclidean distance 1 is unknown except in the trivial case of dimension 1. In this paper, we consider the case of a distance associated to a polytope that tiles space, where it is likely that the sets avoiding distance 1 are of maximal densi...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2019-10, Vol.62 (3), p.497-524 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The maximal density of a measurable subset of
R
n
avoiding Euclidean distance 1 is unknown except in the trivial case of dimension 1. In this paper, we consider the case of a distance associated to a polytope that tiles space, where it is likely that the sets avoiding distance 1 are of maximal density
2
-
n
, as conjectured by Bachoc and Robins. We prove that this is true for
n
=
2
, and for the Voronoi regions of the lattices
A
n
,
n
≥
2
. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-019-00113-x |