A single Bayesian network classifier for monitoring with unknown classes

In this paper, the Conditional Gaussian Networks (CGNs), a form of Bayesian Networks (BN), are used as a statistical process monitoring approach to detect and diagnose faults. The proposed approach improves the structure of Bayesian networks and generalizes a few results regarding statistical tests...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence 2019-10, Vol.85, p.681-690
Hauptverfasser: Atoui, M. Amine, Cohen, Achraf, Verron, Sylvain, Kobi, Abdessamad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the Conditional Gaussian Networks (CGNs), a form of Bayesian Networks (BN), are used as a statistical process monitoring approach to detect and diagnose faults. The proposed approach improves the structure of Bayesian networks and generalizes a few results regarding statistical tests and the use of an exclusion criterion. The proposed framework is evaluated using data from the benchmark Tennessee Eastman Process (TEP) with various scenarios.
ISSN:0952-1976
1873-6769
DOI:10.1016/j.engappai.2019.07.016