Self-normalized Cramér type moderate deviations for martingales
Let (Xi, ℱi)i≥1 be a sequence of martingale differences. Set S n = Σ i = 1 n X i and S n = Σ i = 1 n X i 2 . We prove a Cramér type moderate deviation expansion for P S n / S n ≥ x as n ➝ + ∞. Our results partly extend the earlier work of Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) for...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2019-11, Vol.25 (4A), p.2793-2823 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2823 |
---|---|
container_issue | 4A |
container_start_page | 2793 |
container_title | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
container_volume | 25 |
creator | FAN, XIEQUAN GRAMA, ION LIU, QUANSHENG SHAO, QI-MAN |
description | Let (Xi, ℱi)i≥1 be a sequence of martingale differences. Set
S
n
=
Σ
i
=
1
n
X
i
and
S
n
=
Σ
i
=
1
n
X
i
2
. We prove a Cramér type moderate deviation expansion for
P
S
n
/
S
n
≥
x
as n ➝ + ∞. Our results partly extend the earlier work of Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) for independent random variables. |
doi_str_mv | 10.3150/18-BEJ1071 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02487825v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48586014</jstor_id><sourcerecordid>48586014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-aa5808f1f0cf0487862387961157ce7a6f170bf5f72eb43f7c962d21f376fac13</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKsX78JeFaKZZPOxN2upVil4UM8h3c3olt2mJEuh_iN_h3_MXVo8zTA88_LyEHIJ7FaAZHdg6MPsBZiGIzICqQUttCyO-11IRjVX8pScpbRiDHKl2Ijcv_kG6TrE1jX1t6-yaXTt70_Mut3GZ22ofHSdzyq_rV1Xh3XKMMSsdbGr15-u8emcnKBrkr84zDH5eJy9T-d08fr0PJ0saCm46Khz0jCDgKxElhttFBdGFwr6kqXXTiFotkSJmvtlLlCXheIVBxRaoStBjMn1PvfLNXYT677CzgZX2_lkYYcb40Msl9uBvdmzZQwpRY__D8Ds4MmCsQdPPXy1h1epC_GfzI00qrck_gDICmPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-normalized Cramér type moderate deviations for martingales</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>FAN, XIEQUAN ; GRAMA, ION ; LIU, QUANSHENG ; SHAO, QI-MAN</creator><creatorcontrib>FAN, XIEQUAN ; GRAMA, ION ; LIU, QUANSHENG ; SHAO, QI-MAN</creatorcontrib><description>Let (Xi, ℱi)i≥1 be a sequence of martingale differences. Set
S
n
=
Σ
i
=
1
n
X
i
and
S
n
=
Σ
i
=
1
n
X
i
2
. We prove a Cramér type moderate deviation expansion for
P
S
n
/
S
n
≥
x
as n ➝ + ∞. Our results partly extend the earlier work of Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) for independent random variables.</description><identifier>ISSN: 1350-7265</identifier><identifier>EISSN: 1573-9759</identifier><identifier>DOI: 10.3150/18-BEJ1071</identifier><language>eng</language><publisher>International Statistical Institute (ISI)</publisher><subject>Mathematics ; Probability</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2019-11, Vol.25 (4A), p.2793-2823</ispartof><rights>2019 ISI/BS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-aa5808f1f0cf0487862387961157ce7a6f170bf5f72eb43f7c962d21f376fac13</citedby><cites>FETCH-LOGICAL-c323t-aa5808f1f0cf0487862387961157ce7a6f170bf5f72eb43f7c962d21f376fac13</cites><orcidid>0000-0001-8824-8032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02487825$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>FAN, XIEQUAN</creatorcontrib><creatorcontrib>GRAMA, ION</creatorcontrib><creatorcontrib>LIU, QUANSHENG</creatorcontrib><creatorcontrib>SHAO, QI-MAN</creatorcontrib><title>Self-normalized Cramér type moderate deviations for martingales</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>Let (Xi, ℱi)i≥1 be a sequence of martingale differences. Set
S
n
=
Σ
i
=
1
n
X
i
and
S
n
=
Σ
i
=
1
n
X
i
2
. We prove a Cramér type moderate deviation expansion for
P
S
n
/
S
n
≥
x
as n ➝ + ∞. Our results partly extend the earlier work of Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) for independent random variables.</description><subject>Mathematics</subject><subject>Probability</subject><issn>1350-7265</issn><issn>1573-9759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKsX78JeFaKZZPOxN2upVil4UM8h3c3olt2mJEuh_iN_h3_MXVo8zTA88_LyEHIJ7FaAZHdg6MPsBZiGIzICqQUttCyO-11IRjVX8pScpbRiDHKl2Ijcv_kG6TrE1jX1t6-yaXTt70_Mut3GZ22ofHSdzyq_rV1Xh3XKMMSsdbGr15-u8emcnKBrkr84zDH5eJy9T-d08fr0PJ0saCm46Khz0jCDgKxElhttFBdGFwr6kqXXTiFotkSJmvtlLlCXheIVBxRaoStBjMn1PvfLNXYT677CzgZX2_lkYYcb40Msl9uBvdmzZQwpRY__D8Ds4MmCsQdPPXy1h1epC_GfzI00qrck_gDICmPA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>FAN, XIEQUAN</creator><creator>GRAMA, ION</creator><creator>LIU, QUANSHENG</creator><creator>SHAO, QI-MAN</creator><general>International Statistical Institute (ISI)</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8824-8032</orcidid></search><sort><creationdate>20191101</creationdate><title>Self-normalized Cramér type moderate deviations for martingales</title><author>FAN, XIEQUAN ; GRAMA, ION ; LIU, QUANSHENG ; SHAO, QI-MAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-aa5808f1f0cf0487862387961157ce7a6f170bf5f72eb43f7c962d21f376fac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FAN, XIEQUAN</creatorcontrib><creatorcontrib>GRAMA, ION</creatorcontrib><creatorcontrib>LIU, QUANSHENG</creatorcontrib><creatorcontrib>SHAO, QI-MAN</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FAN, XIEQUAN</au><au>GRAMA, ION</au><au>LIU, QUANSHENG</au><au>SHAO, QI-MAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-normalized Cramér type moderate deviations for martingales</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>25</volume><issue>4A</issue><spage>2793</spage><epage>2823</epage><pages>2793-2823</pages><issn>1350-7265</issn><eissn>1573-9759</eissn><abstract>Let (Xi, ℱi)i≥1 be a sequence of martingale differences. Set
S
n
=
Σ
i
=
1
n
X
i
and
S
n
=
Σ
i
=
1
n
X
i
2
. We prove a Cramér type moderate deviation expansion for
P
S
n
/
S
n
≥
x
as n ➝ + ∞. Our results partly extend the earlier work of Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) for independent random variables.</abstract><pub>International Statistical Institute (ISI)</pub><doi>10.3150/18-BEJ1071</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-8824-8032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-7265 |
ispartof | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2019-11, Vol.25 (4A), p.2793-2823 |
issn | 1350-7265 1573-9759 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02487825v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete |
subjects | Mathematics Probability |
title | Self-normalized Cramér type moderate deviations for martingales |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-normalized%20Cram%C3%A9r%20type%20moderate%20deviations%20for%20martingales&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=FAN,%20XIEQUAN&rft.date=2019-11-01&rft.volume=25&rft.issue=4A&rft.spage=2793&rft.epage=2823&rft.pages=2793-2823&rft.issn=1350-7265&rft.eissn=1573-9759&rft_id=info:doi/10.3150/18-BEJ1071&rft_dat=%3Cjstor_hal_p%3E48586014%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=48586014&rfr_iscdi=true |