Self-normalized Cramér type moderate deviations for martingales
Let (Xi, ℱi)i≥1 be a sequence of martingale differences. Set S n = Σ i = 1 n X i and S n = Σ i = 1 n X i 2 . We prove a Cramér type moderate deviation expansion for P S n / S n ≥ x as n ➝ + ∞. Our results partly extend the earlier work of Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) for...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2019-11, Vol.25 (4A), p.2793-2823 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (Xi, ℱi)i≥1 be a sequence of martingale differences. Set
S
n
=
Σ
i
=
1
n
X
i
and
S
n
=
Σ
i
=
1
n
X
i
2
. We prove a Cramér type moderate deviation expansion for
P
S
n
/
S
n
≥
x
as n ➝ + ∞. Our results partly extend the earlier work of Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) for independent random variables. |
---|---|
ISSN: | 1350-7265 1573-9759 |
DOI: | 10.3150/18-BEJ1071 |