Self-normalized Cramér type moderate deviations for martingales

Let (Xi, ℱi)i≥1 be a sequence of martingale differences. Set S n = Σ i = 1 n X i and S n = Σ i = 1 n   X i 2 . We prove a Cramér type moderate deviation expansion for P S n / S n ≥ x as n ➝ + ∞. Our results partly extend the earlier work of Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2019-11, Vol.25 (4A), p.2793-2823
Hauptverfasser: FAN, XIEQUAN, GRAMA, ION, LIU, QUANSHENG, SHAO, QI-MAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (Xi, ℱi)i≥1 be a sequence of martingale differences. Set S n = Σ i = 1 n X i and S n = Σ i = 1 n   X i 2 . We prove a Cramér type moderate deviation expansion for P S n / S n ≥ x as n ➝ + ∞. Our results partly extend the earlier work of Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167–2215) for independent random variables.
ISSN:1350-7265
1573-9759
DOI:10.3150/18-BEJ1071