Estimation of extreme quantiles from heavy-tailed distributions in a location-dispersion regression model

We consider a location-dispersion regression model for heavy-tailed distributions when the multidimensional covariate is deterministic. In a first step, nonparametric estimators of the regression and dispersion functions are introduced. This permits, in a second step, to derive an estimator of the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of statistics 2020-01, Vol.14 (2), p.4421-4456
Hauptverfasser: Ahmad, Aboubacrène Ag, Deme, El Hadji, Diop, Aliou, Girard, Stéphane, Usseglio-Carleve, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a location-dispersion regression model for heavy-tailed distributions when the multidimensional covariate is deterministic. In a first step, nonparametric estimators of the regression and dispersion functions are introduced. This permits, in a second step, to derive an estimator of the conditional extreme-value index computed on the residuals. Finally, a plug-in estimator of extreme conditional quantiles is built using these two preliminary steps. It is shown that the resulting semi-parametric estimator is asymptotically Gaussian and may benefit from the same rate of convergence as in the unconditional situation. Its finite sample properties are illustrated both on simulated and real tsunami data.
ISSN:1935-7524
1935-7524
DOI:10.1214/20-EJS1779