Optimal Time Interval Selection in Long-Run Correlation Estimation

This paper presents an asymptotically optimal time interval selection criterion for the long-run correlation block estimator (Bartlett kernel estimator) based on the Newey–West and Andrews–Monahan approaches. An alignment criterion that enhances finite-sample performance is also proposed. The proced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative economics : journal of the Indian Econometric Society 2020-03, Vol.18 (1), p.53-79
1. Verfasser: Albuquerque, Pedro H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an asymptotically optimal time interval selection criterion for the long-run correlation block estimator (Bartlett kernel estimator) based on the Newey–West and Andrews–Monahan approaches. An alignment criterion that enhances finite-sample performance is also proposed. The procedure offers an optimal alternative to the customary practice in finance and economics of heuristically or arbitrarily choosing time intervals or lags in correlation studies. A Monte Carlo experiment using parameters derived from Dow Jones returns data confirms that the procedure can be MSE-superior to alternatives such as aggregation over arbitrary time intervals, parametric VAR, and Newey–West covariance matrix estimation with automatic lag selection.
ISSN:0971-1554
2364-1045
DOI:10.1007/s40953-019-00175-x