A New Micro-Batch Approach for Partial Least Square Clusterwise Regression

Current implementations of Clusterwise methods for regression when applied to massive data either have prohibitive computational costs or produce models that are difficult to interpret. We introduce a new implementation Micro-Batch Clusterwise Partial Least Squares (mb-CW-PLS), which is consists of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science 2018, Vol.144, p.239-250
Hauptverfasser: Gaël, Beck, Hanane, Azzag, Stéphanie, Bougeard, Mustapha, Lebbah, Ndèye, Niang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current implementations of Clusterwise methods for regression when applied to massive data either have prohibitive computational costs or produce models that are difficult to interpret. We introduce a new implementation Micro-Batch Clusterwise Partial Least Squares (mb-CW-PLS), which is consists of two main improvements: (a) a scalable and distributed computational framework and (b) a micro-batch Clusterwise regression using buckets (micro-clusters). With these improvements, we are able to produce interpretable regression models with multicollinearity within a reasonable time frame.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2018.10.525