Handling Missing Annotations for Semantic Segmentation with Deep ConvNets

Annotation of medical images for semantic segmentation is a very time consuming and difficult task. Moreover, clinical experts often focus on specific anatomical structures and thus, produce partially annotated images. In this paper, we introduce SMILE, a new deep convolutional neural network which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Petit, Olivier, Thome, Nicolas, Charnoz, Arnaud, Hostettler, Alexandre, Soler, Luc
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Annotation of medical images for semantic segmentation is a very time consuming and difficult task. Moreover, clinical experts often focus on specific anatomical structures and thus, produce partially annotated images. In this paper, we introduce SMILE, a new deep convolutional neural network which addresses the issue of learning with incomplete ground truth. SMILE aims to identify ambiguous labels in order to ignore them during training, and don’t propagate incorrect or noisy information. A second contribution is SMILEr which uses SMILE as initialization for automatically relabeling missing annotations, using a curriculum strategy. Experiments on 3 organ classes (liver, stomach, pancreas) show the relevance of the proposed approach for semantic segmentation: with 70% of missing annotations, SMILEr performs similarly as a baseline trained with complete ground truth annotations.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-00889-5_3