Variable selection for multiply-imputed data with penalized generalized estimating equations
Generalized estimating equations (GEE) are useful tools for marginal regression analysis for longitudinal data. Having a high number of variables along with the presence of missing data presents complex issues when working in a longitudinal context. In variable selection for instance, penalized gene...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2017-06, Vol.110, p.103-114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generalized estimating equations (GEE) are useful tools for marginal regression analysis for longitudinal data. Having a high number of variables along with the presence of missing data presents complex issues when working in a longitudinal context. In variable selection for instance, penalized generalized estimating equations have not been systematically developed to integrate missing data. The MI-PGEE: multiple imputation-penalized generalized estimating equations, an extension of the multiple imputation-least absolute shrinkage and selection operator (MI-LASSO) is presented. MI-PGEE allows integration of missing data and within-subject correlation in variable selection procedures. Missing data are dealt with using multiple imputation, and variable selection is performed using a group LASSO penalty. Estimated coefficients for the same variable across multiply-imputed datasets are considered as a group while applying penalized generalized estimating equations, leading to a unique model across multiply-imputed datasets. In order to select the tuning parameter, a new BIC-like criterion is proposed. In a simulation study, the advantage of using MI-PGEE compared to simple imputation PGEE is shown. The usefulness of the new method is illustrated by an application to a subgroup of the placebo arm of the strontium ranelate efficacy in knee osteoarthritis trial study. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2017.01.001 |