Seasonal variations in Pluto’s atmospheric tides

•We develop a model for seasonal variations of atmospheric tides on Pluto.•We use HST observations and volatile transport models for tide predictions.•The tidal model matches observed wave activity from occultations.•We present scaling laws to predict variations in tides. Pluto’s tenuous atmosphere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2015-01, Vol.246, p.247-267
Hauptverfasser: French, Richard G., Toigo, Anthony D., Gierasch, Peter J., Hansen, Candice J., Young, Leslie A., Sicardy, Bruno, Dias-Oliveira, Alex, Guzewich, Scott D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•We develop a model for seasonal variations of atmospheric tides on Pluto.•We use HST observations and volatile transport models for tide predictions.•The tidal model matches observed wave activity from occultations.•We present scaling laws to predict variations in tides. Pluto’s tenuous atmosphere exhibits remarkable seasonal change as a result of the planet’s substantial obliquity and highly eccentric orbit. Over the past two decades, occultations have revealed that the atmospheric pressure on Pluto has increased substantially, perhaps by a factor as large as 2 to 4, as the planet has moved from equinox towards solstice conditions. These data have also shown variations in the strength of the dynamical activity in the atmosphere, as revealed by the varying abundance and amplitude of spikes in the occultation light curves resulting from refractive focussing by atmospheric waves. Toigo et al. (Toigo et al. [2010]. Icarus, 208, 402–411) explored the possibility that these waves are caused by solar-induced sublimation and diurnal deposition from N2 frost patches, driven by weak vertical winds resulting from the rising and sinking gas as it is released from or deposited onto the surface. Here, we extend this model to account explicitly for seasonal variations in average insolation and for the significant damping of vertical wave propagation by kinematic viscosity and thermal diffusivity (Hubbard et al. [2009]. Icarus, 204, 284–289). Damping is extremely effective in suppressing vertical propagation of waves with vertical wavelengths of a few kilometers or less, and the dominant surviving tidal modes have characteristic vertical wavelengths λ∼10–13km. We estimate the expected strength and regional characteristics of atmospheric tides over the course of Pluto’s orbit for a variety of assumed spatial distributions of surface frost and atmospheric surface pressure. We compute the predicted strength of tide-induced wave activity based on the actual frost distribution observed on Pluto from Hubble Space Telescope (HST) observations (Stern et al. [1997]. Astron. J., 113, 827; Buie et al. [2010]. Astron. J., 139, 1128–1143), and compare the results to calculations for volatile transport models of Young (Young [2013]. Astrophys. J., 766, L22) and Hansen et al. (Hansen et al. [2015]. Icarus, 246, 183–191). We develop simple scaling rules to estimate the variation of the strength of tidal activity with surface pressure PS and solar declination δ⊙, and show that the maxim
ISSN:0019-1035
1090-2643
DOI:10.1016/j.icarus.2014.05.017