Two-input control-affine systems linearizable via one-fold prolongation and their flatness
We study flatness of two-input control-affine systems, defined on an n-dimensional state-space. We give a complete geometric characterization of systems that become static feedback linearizable after a one-fold prolongation of a suitably chosen control. They form a particular class of flat systems:...
Gespeichert in:
Veröffentlicht in: | European journal of control 2016-03, Vol.28, p.20-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study flatness of two-input control-affine systems, defined on an n-dimensional state-space. We give a complete geometric characterization of systems that become static feedback linearizable after a one-fold prolongation of a suitably chosen control. They form a particular class of flat systems: they are of differential weight n + 3. We give normal forms compatible with the minimal flat outputs and provide a system of first order PDE׳s to be solved in order to find all minimal flat outputs. We illustrate our results by two examples: the induction motor and the polymerization reactor. |
---|---|
ISSN: | 0947-3580 1435-5671 |
DOI: | 10.1016/j.ejcon.2015.11.001 |