Two-input control-affine systems linearizable via one-fold prolongation and their flatness

We study flatness of two-input control-affine systems, defined on an n-dimensional state-space. We give a complete geometric characterization of systems that become static feedback linearizable after a one-fold prolongation of a suitably chosen control. They form a particular class of flat systems:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of control 2016-03, Vol.28, p.20-37
Hauptverfasser: Nicolau, Florentina, Respondek, Witold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study flatness of two-input control-affine systems, defined on an n-dimensional state-space. We give a complete geometric characterization of systems that become static feedback linearizable after a one-fold prolongation of a suitably chosen control. They form a particular class of flat systems: they are of differential weight n + 3. We give normal forms compatible with the minimal flat outputs and provide a system of first order PDE׳s to be solved in order to find all minimal flat outputs. We illustrate our results by two examples: the induction motor and the polymerization reactor.
ISSN:0947-3580
1435-5671
DOI:10.1016/j.ejcon.2015.11.001