Aza-BODIPY Platform: Toward an Efficient Water-Soluble Bimodal Imaging Probe for MRI and Near-Infrared Fluorescence

In this study, an original aza-BODIPY system comprising two Gd3+ complexes has been designed and synthesized for magnetic resonance imaging/optical imaging applications, by functionalization of the boron center. This strategy enabled the obtainment of a positively charged bimodal probe, which displa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2020-01, Vol.59 (2), p.1306-1314
Hauptverfasser: Florès, Océane, Pliquett, Jacques, Abad Galan, Laura, Lescure, Robin, Denat, Franck, Maury, Olivier, Pallier, Agnès, Bellaye, Pierre-Simon, Collin, Bertrand, Même, Sandra, Bonnet, Célia S, Bodio, Ewen, Goze, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, an original aza-BODIPY system comprising two Gd3+ complexes has been designed and synthesized for magnetic resonance imaging/optical imaging applications, by functionalization of the boron center. This strategy enabled the obtainment of a positively charged bimodal probe, which displays an increased water solubility, optimized photophysical properties in the near-infrared region, and very promising relaxometric properties. The absorption and emission wavelengths are 705 and 741 nm, respectively, with a quantum yield of around 10% in aqueous media. Moreover, the system does not produce singlet oxygen upon excitation, which would be toxic for tissues. The relaxivity obtained is high at intermediate fields (16.1 mM–1 s–1 at 20 MHz and 310 K) and competes with that of bigger or more rigid systems. A full relaxometric and 17O NMR study and fitting of the data using the Lipari-Szabo approach showed that this high relaxivity can be explained by the size of the system and the presence of some small aggregates. These optimized photophysical and relaxometric properties highlight the potential use of such systems for future bimodal imaging studies.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.9b03017