Asymptotics of twisted Alexander polynomials and hyperbolic volume

For a hyperbolic knot and a natural number n, we consider the Alexander polynomial twisted by the n-th symmetric power of a lift of the holonomy. We establish the asymptotic behavior of these twisted Alexander polynomials evaluated at unit complex numbers, yielding the volume of the knot exterior. M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2022, Vol.71 (3), p.1155-1207
Hauptverfasser: Benard, Leo, Dubois, Jerome, Heusener, Michael, Porti, Joan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a hyperbolic knot and a natural number n, we consider the Alexander polynomial twisted by the n-th symmetric power of a lift of the holonomy. We establish the asymptotic behavior of these twisted Alexander polynomials evaluated at unit complex numbers, yielding the volume of the knot exterior. More generally, we prove the asymptotic behavior for cusped hyperbolic manifolds of finite volume. The proof relies on results of Müller, and Menal-Ferrer and the last author. Using the uniformity of the convergence, we also deduce a similar asymptotic result for the Mahler measures of those polynomials.
ISSN:0022-2518
DOI:10.1512/iumj.2022.71.8937