In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise
Although good progress was made by two international benchmark exercises on in-plane permeability, existing methods have not yet been standardized. This paper presents the results of a third benchmark exercise using in-plane permeability measurement, based on systems applying the radial unsaturated...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2019-06, Vol.121, p.100-114 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 100 |
container_title | Composites. Part A, Applied science and manufacturing |
container_volume | 121 |
creator | May, D. Aktas, A. Advani, S.G. Berg, D.C. Endruweit, A. Fauster, E. Lomov, S.V. Long, A. Mitschang, P. Abaimov, S. Abliz, D. Akhatov, I. Ali, M.A. Allen, T.D. Bickerton, S. Bodaghi, M. Caglar, B. Caglar, H. Chiminelli, A. Correia, N. Cosson, B. Danzi, M. Dittmann, J. Ermanni, P. Francucci, G. George, A. Grishaev, V. Hancioglu, M. Kabachi, M.A. Kind, K. Deléglise-Lagardère, M. Laspalas, M. Lebedev, O.V. Lizaranzu, M. Liotier, P.-J. Middendorf, P. Morán, J. Park, C.-H. Pipes, R.B. Pucci, M.F. Raynal, J. Rodriguez, E.S. Schledjewski, R. Schubnel, R. Sharp, N. Sims, G. Sozer, E.M. Sousa, P. Thomas, J. Umer, R. Wijaya, W. Willenbacher, B. Yong, A. Zaremba, S. Ziegmann, G. |
description | Although good progress was made by two international benchmark exercises on in-plane permeability, existing methods have not yet been standardized. This paper presents the results of a third benchmark exercise using in-plane permeability measurement, based on systems applying the radial unsaturated injection method. 19 participants using 20 systems characterized a non-crimp and a woven fabric at three different fiber volume contents, using a commercially available silicone oil as impregnating fluid. They followed a detailed characterization procedure and also completed a questionnaire on their set-up and analysis methods. Excluding outliers (2 of 20), the average coefficient of variation (cv) between the participant’s results was 32% and 44% (non-crimp and woven fabric), while the average cv for individual participants was 8% and 12%, respectively. This indicates statistically significant variations between the measurement systems. Cavity deformation was identified as a major influence, besides fluid pressure/viscosity measurement, textile variations, and data analysis. |
doi_str_mv | 10.1016/j.compositesa.2019.03.006 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02429024v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X1930079X</els_id><sourcerecordid>S1359835X1930079X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4cf3d7d18458fa135742aefa54d1ee868b7daf4ada2d5a757493341bbb13c25d3</originalsourceid><addsrcrecordid>eNqNUE1LAzEQDaJgrf6HePSwa7LJdne9laK2UPCi4C3MJrNt6n6UJFbrrzelIh69zAwz7z3mPUKuOUs545PbTaqHbjt4G9BDmjFepUykjE1OyIiXRZnkpWSncRZ5lZQifz0nF95vGGNCVHxE3hd9sm2hR7pF1yHUtrVhT_UaHOiAzn5BsENPh4Ziv7I9xlW_ogE_g23R0xo8GhoBDoyFljbt8EHxM4rZDvvg7-iU1tjrdQfuLR7Qaevxkpw10Hq8-ulj8vJw_zybJ8unx8Vsuky0lCIkUjfCFIaXMi8biBYKmQE2kEvDEctJWRcGGgkGMpNDEc-VEJLXdc2FznIjxuTmqLuGVm3jS-D2agCr5tOlOuxYJrMqlh2P2OqI1W7w3mHzS-BMHbJWG_Una3XIWjGhYtaROztyMZrZWXTKaxtdo7EOdVBmsP9Q-QYVD5E_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise</title><source>Elsevier ScienceDirect Journals</source><creator>May, D. ; Aktas, A. ; Advani, S.G. ; Berg, D.C. ; Endruweit, A. ; Fauster, E. ; Lomov, S.V. ; Long, A. ; Mitschang, P. ; Abaimov, S. ; Abliz, D. ; Akhatov, I. ; Ali, M.A. ; Allen, T.D. ; Bickerton, S. ; Bodaghi, M. ; Caglar, B. ; Caglar, H. ; Chiminelli, A. ; Correia, N. ; Cosson, B. ; Danzi, M. ; Dittmann, J. ; Ermanni, P. ; Francucci, G. ; George, A. ; Grishaev, V. ; Hancioglu, M. ; Kabachi, M.A. ; Kind, K. ; Deléglise-Lagardère, M. ; Laspalas, M. ; Lebedev, O.V. ; Lizaranzu, M. ; Liotier, P.-J. ; Middendorf, P. ; Morán, J. ; Park, C.-H. ; Pipes, R.B. ; Pucci, M.F. ; Raynal, J. ; Rodriguez, E.S. ; Schledjewski, R. ; Schubnel, R. ; Sharp, N. ; Sims, G. ; Sozer, E.M. ; Sousa, P. ; Thomas, J. ; Umer, R. ; Wijaya, W. ; Willenbacher, B. ; Yong, A. ; Zaremba, S. ; Ziegmann, G.</creator><creatorcontrib>May, D. ; Aktas, A. ; Advani, S.G. ; Berg, D.C. ; Endruweit, A. ; Fauster, E. ; Lomov, S.V. ; Long, A. ; Mitschang, P. ; Abaimov, S. ; Abliz, D. ; Akhatov, I. ; Ali, M.A. ; Allen, T.D. ; Bickerton, S. ; Bodaghi, M. ; Caglar, B. ; Caglar, H. ; Chiminelli, A. ; Correia, N. ; Cosson, B. ; Danzi, M. ; Dittmann, J. ; Ermanni, P. ; Francucci, G. ; George, A. ; Grishaev, V. ; Hancioglu, M. ; Kabachi, M.A. ; Kind, K. ; Deléglise-Lagardère, M. ; Laspalas, M. ; Lebedev, O.V. ; Lizaranzu, M. ; Liotier, P.-J. ; Middendorf, P. ; Morán, J. ; Park, C.-H. ; Pipes, R.B. ; Pucci, M.F. ; Raynal, J. ; Rodriguez, E.S. ; Schledjewski, R. ; Schubnel, R. ; Sharp, N. ; Sims, G. ; Sozer, E.M. ; Sousa, P. ; Thomas, J. ; Umer, R. ; Wijaya, W. ; Willenbacher, B. ; Yong, A. ; Zaremba, S. ; Ziegmann, G.</creatorcontrib><description>Although good progress was made by two international benchmark exercises on in-plane permeability, existing methods have not yet been standardized. This paper presents the results of a third benchmark exercise using in-plane permeability measurement, based on systems applying the radial unsaturated injection method. 19 participants using 20 systems characterized a non-crimp and a woven fabric at three different fiber volume contents, using a commercially available silicone oil as impregnating fluid. They followed a detailed characterization procedure and also completed a questionnaire on their set-up and analysis methods. Excluding outliers (2 of 20), the average coefficient of variation (cv) between the participant’s results was 32% and 44% (non-crimp and woven fabric), while the average cv for individual participants was 8% and 12%, respectively. This indicates statistically significant variations between the measurement systems. Cavity deformation was identified as a major influence, besides fluid pressure/viscosity measurement, textile variations, and data analysis.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2019.03.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Fabrics/textiles ; B. Permeability ; D. Process monitoring ; E. Liquid composite molding ; E. Resin flow ; Engineering Sciences ; Materials</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2019-06, Vol.121, p.100-114</ispartof><rights>2019 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4cf3d7d18458fa135742aefa54d1ee868b7daf4ada2d5a757493341bbb13c25d3</citedby><cites>FETCH-LOGICAL-c443t-4cf3d7d18458fa135742aefa54d1ee868b7daf4ada2d5a757493341bbb13c25d3</cites><orcidid>0000-0001-7929-4221 ; 0000-0003-1001-2497 ; 0000-0001-7769-8732 ; 0000-0002-7169-5626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2019.03.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://imt-mines-ales.hal.science/hal-02429024$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>May, D.</creatorcontrib><creatorcontrib>Aktas, A.</creatorcontrib><creatorcontrib>Advani, S.G.</creatorcontrib><creatorcontrib>Berg, D.C.</creatorcontrib><creatorcontrib>Endruweit, A.</creatorcontrib><creatorcontrib>Fauster, E.</creatorcontrib><creatorcontrib>Lomov, S.V.</creatorcontrib><creatorcontrib>Long, A.</creatorcontrib><creatorcontrib>Mitschang, P.</creatorcontrib><creatorcontrib>Abaimov, S.</creatorcontrib><creatorcontrib>Abliz, D.</creatorcontrib><creatorcontrib>Akhatov, I.</creatorcontrib><creatorcontrib>Ali, M.A.</creatorcontrib><creatorcontrib>Allen, T.D.</creatorcontrib><creatorcontrib>Bickerton, S.</creatorcontrib><creatorcontrib>Bodaghi, M.</creatorcontrib><creatorcontrib>Caglar, B.</creatorcontrib><creatorcontrib>Caglar, H.</creatorcontrib><creatorcontrib>Chiminelli, A.</creatorcontrib><creatorcontrib>Correia, N.</creatorcontrib><creatorcontrib>Cosson, B.</creatorcontrib><creatorcontrib>Danzi, M.</creatorcontrib><creatorcontrib>Dittmann, J.</creatorcontrib><creatorcontrib>Ermanni, P.</creatorcontrib><creatorcontrib>Francucci, G.</creatorcontrib><creatorcontrib>George, A.</creatorcontrib><creatorcontrib>Grishaev, V.</creatorcontrib><creatorcontrib>Hancioglu, M.</creatorcontrib><creatorcontrib>Kabachi, M.A.</creatorcontrib><creatorcontrib>Kind, K.</creatorcontrib><creatorcontrib>Deléglise-Lagardère, M.</creatorcontrib><creatorcontrib>Laspalas, M.</creatorcontrib><creatorcontrib>Lebedev, O.V.</creatorcontrib><creatorcontrib>Lizaranzu, M.</creatorcontrib><creatorcontrib>Liotier, P.-J.</creatorcontrib><creatorcontrib>Middendorf, P.</creatorcontrib><creatorcontrib>Morán, J.</creatorcontrib><creatorcontrib>Park, C.-H.</creatorcontrib><creatorcontrib>Pipes, R.B.</creatorcontrib><creatorcontrib>Pucci, M.F.</creatorcontrib><creatorcontrib>Raynal, J.</creatorcontrib><creatorcontrib>Rodriguez, E.S.</creatorcontrib><creatorcontrib>Schledjewski, R.</creatorcontrib><creatorcontrib>Schubnel, R.</creatorcontrib><creatorcontrib>Sharp, N.</creatorcontrib><creatorcontrib>Sims, G.</creatorcontrib><creatorcontrib>Sozer, E.M.</creatorcontrib><creatorcontrib>Sousa, P.</creatorcontrib><creatorcontrib>Thomas, J.</creatorcontrib><creatorcontrib>Umer, R.</creatorcontrib><creatorcontrib>Wijaya, W.</creatorcontrib><creatorcontrib>Willenbacher, B.</creatorcontrib><creatorcontrib>Yong, A.</creatorcontrib><creatorcontrib>Zaremba, S.</creatorcontrib><creatorcontrib>Ziegmann, G.</creatorcontrib><title>In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise</title><title>Composites. Part A, Applied science and manufacturing</title><description>Although good progress was made by two international benchmark exercises on in-plane permeability, existing methods have not yet been standardized. This paper presents the results of a third benchmark exercise using in-plane permeability measurement, based on systems applying the radial unsaturated injection method. 19 participants using 20 systems characterized a non-crimp and a woven fabric at three different fiber volume contents, using a commercially available silicone oil as impregnating fluid. They followed a detailed characterization procedure and also completed a questionnaire on their set-up and analysis methods. Excluding outliers (2 of 20), the average coefficient of variation (cv) between the participant’s results was 32% and 44% (non-crimp and woven fabric), while the average cv for individual participants was 8% and 12%, respectively. This indicates statistically significant variations between the measurement systems. Cavity deformation was identified as a major influence, besides fluid pressure/viscosity measurement, textile variations, and data analysis.</description><subject>A. Fabrics/textiles</subject><subject>B. Permeability</subject><subject>D. Process monitoring</subject><subject>E. Liquid composite molding</subject><subject>E. Resin flow</subject><subject>Engineering Sciences</subject><subject>Materials</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LAzEQDaJgrf6HePSwa7LJdne9laK2UPCi4C3MJrNt6n6UJFbrrzelIh69zAwz7z3mPUKuOUs545PbTaqHbjt4G9BDmjFepUykjE1OyIiXRZnkpWSncRZ5lZQifz0nF95vGGNCVHxE3hd9sm2hR7pF1yHUtrVhT_UaHOiAzn5BsENPh4Ziv7I9xlW_ogE_g23R0xo8GhoBDoyFljbt8EHxM4rZDvvg7-iU1tjrdQfuLR7Qaevxkpw10Hq8-ulj8vJw_zybJ8unx8Vsuky0lCIkUjfCFIaXMi8biBYKmQE2kEvDEctJWRcGGgkGMpNDEc-VEJLXdc2FznIjxuTmqLuGVm3jS-D2agCr5tOlOuxYJrMqlh2P2OqI1W7w3mHzS-BMHbJWG_Una3XIWjGhYtaROztyMZrZWXTKaxtdo7EOdVBmsP9Q-QYVD5E_</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>May, D.</creator><creator>Aktas, A.</creator><creator>Advani, S.G.</creator><creator>Berg, D.C.</creator><creator>Endruweit, A.</creator><creator>Fauster, E.</creator><creator>Lomov, S.V.</creator><creator>Long, A.</creator><creator>Mitschang, P.</creator><creator>Abaimov, S.</creator><creator>Abliz, D.</creator><creator>Akhatov, I.</creator><creator>Ali, M.A.</creator><creator>Allen, T.D.</creator><creator>Bickerton, S.</creator><creator>Bodaghi, M.</creator><creator>Caglar, B.</creator><creator>Caglar, H.</creator><creator>Chiminelli, A.</creator><creator>Correia, N.</creator><creator>Cosson, B.</creator><creator>Danzi, M.</creator><creator>Dittmann, J.</creator><creator>Ermanni, P.</creator><creator>Francucci, G.</creator><creator>George, A.</creator><creator>Grishaev, V.</creator><creator>Hancioglu, M.</creator><creator>Kabachi, M.A.</creator><creator>Kind, K.</creator><creator>Deléglise-Lagardère, M.</creator><creator>Laspalas, M.</creator><creator>Lebedev, O.V.</creator><creator>Lizaranzu, M.</creator><creator>Liotier, P.-J.</creator><creator>Middendorf, P.</creator><creator>Morán, J.</creator><creator>Park, C.-H.</creator><creator>Pipes, R.B.</creator><creator>Pucci, M.F.</creator><creator>Raynal, J.</creator><creator>Rodriguez, E.S.</creator><creator>Schledjewski, R.</creator><creator>Schubnel, R.</creator><creator>Sharp, N.</creator><creator>Sims, G.</creator><creator>Sozer, E.M.</creator><creator>Sousa, P.</creator><creator>Thomas, J.</creator><creator>Umer, R.</creator><creator>Wijaya, W.</creator><creator>Willenbacher, B.</creator><creator>Yong, A.</creator><creator>Zaremba, S.</creator><creator>Ziegmann, G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7929-4221</orcidid><orcidid>https://orcid.org/0000-0003-1001-2497</orcidid><orcidid>https://orcid.org/0000-0001-7769-8732</orcidid><orcidid>https://orcid.org/0000-0002-7169-5626</orcidid></search><sort><creationdate>20190601</creationdate><title>In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise</title><author>May, D. ; Aktas, A. ; Advani, S.G. ; Berg, D.C. ; Endruweit, A. ; Fauster, E. ; Lomov, S.V. ; Long, A. ; Mitschang, P. ; Abaimov, S. ; Abliz, D. ; Akhatov, I. ; Ali, M.A. ; Allen, T.D. ; Bickerton, S. ; Bodaghi, M. ; Caglar, B. ; Caglar, H. ; Chiminelli, A. ; Correia, N. ; Cosson, B. ; Danzi, M. ; Dittmann, J. ; Ermanni, P. ; Francucci, G. ; George, A. ; Grishaev, V. ; Hancioglu, M. ; Kabachi, M.A. ; Kind, K. ; Deléglise-Lagardère, M. ; Laspalas, M. ; Lebedev, O.V. ; Lizaranzu, M. ; Liotier, P.-J. ; Middendorf, P. ; Morán, J. ; Park, C.-H. ; Pipes, R.B. ; Pucci, M.F. ; Raynal, J. ; Rodriguez, E.S. ; Schledjewski, R. ; Schubnel, R. ; Sharp, N. ; Sims, G. ; Sozer, E.M. ; Sousa, P. ; Thomas, J. ; Umer, R. ; Wijaya, W. ; Willenbacher, B. ; Yong, A. ; Zaremba, S. ; Ziegmann, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4cf3d7d18458fa135742aefa54d1ee868b7daf4ada2d5a757493341bbb13c25d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A. Fabrics/textiles</topic><topic>B. Permeability</topic><topic>D. Process monitoring</topic><topic>E. Liquid composite molding</topic><topic>E. Resin flow</topic><topic>Engineering Sciences</topic><topic>Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>May, D.</creatorcontrib><creatorcontrib>Aktas, A.</creatorcontrib><creatorcontrib>Advani, S.G.</creatorcontrib><creatorcontrib>Berg, D.C.</creatorcontrib><creatorcontrib>Endruweit, A.</creatorcontrib><creatorcontrib>Fauster, E.</creatorcontrib><creatorcontrib>Lomov, S.V.</creatorcontrib><creatorcontrib>Long, A.</creatorcontrib><creatorcontrib>Mitschang, P.</creatorcontrib><creatorcontrib>Abaimov, S.</creatorcontrib><creatorcontrib>Abliz, D.</creatorcontrib><creatorcontrib>Akhatov, I.</creatorcontrib><creatorcontrib>Ali, M.A.</creatorcontrib><creatorcontrib>Allen, T.D.</creatorcontrib><creatorcontrib>Bickerton, S.</creatorcontrib><creatorcontrib>Bodaghi, M.</creatorcontrib><creatorcontrib>Caglar, B.</creatorcontrib><creatorcontrib>Caglar, H.</creatorcontrib><creatorcontrib>Chiminelli, A.</creatorcontrib><creatorcontrib>Correia, N.</creatorcontrib><creatorcontrib>Cosson, B.</creatorcontrib><creatorcontrib>Danzi, M.</creatorcontrib><creatorcontrib>Dittmann, J.</creatorcontrib><creatorcontrib>Ermanni, P.</creatorcontrib><creatorcontrib>Francucci, G.</creatorcontrib><creatorcontrib>George, A.</creatorcontrib><creatorcontrib>Grishaev, V.</creatorcontrib><creatorcontrib>Hancioglu, M.</creatorcontrib><creatorcontrib>Kabachi, M.A.</creatorcontrib><creatorcontrib>Kind, K.</creatorcontrib><creatorcontrib>Deléglise-Lagardère, M.</creatorcontrib><creatorcontrib>Laspalas, M.</creatorcontrib><creatorcontrib>Lebedev, O.V.</creatorcontrib><creatorcontrib>Lizaranzu, M.</creatorcontrib><creatorcontrib>Liotier, P.-J.</creatorcontrib><creatorcontrib>Middendorf, P.</creatorcontrib><creatorcontrib>Morán, J.</creatorcontrib><creatorcontrib>Park, C.-H.</creatorcontrib><creatorcontrib>Pipes, R.B.</creatorcontrib><creatorcontrib>Pucci, M.F.</creatorcontrib><creatorcontrib>Raynal, J.</creatorcontrib><creatorcontrib>Rodriguez, E.S.</creatorcontrib><creatorcontrib>Schledjewski, R.</creatorcontrib><creatorcontrib>Schubnel, R.</creatorcontrib><creatorcontrib>Sharp, N.</creatorcontrib><creatorcontrib>Sims, G.</creatorcontrib><creatorcontrib>Sozer, E.M.</creatorcontrib><creatorcontrib>Sousa, P.</creatorcontrib><creatorcontrib>Thomas, J.</creatorcontrib><creatorcontrib>Umer, R.</creatorcontrib><creatorcontrib>Wijaya, W.</creatorcontrib><creatorcontrib>Willenbacher, B.</creatorcontrib><creatorcontrib>Yong, A.</creatorcontrib><creatorcontrib>Zaremba, S.</creatorcontrib><creatorcontrib>Ziegmann, G.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>May, D.</au><au>Aktas, A.</au><au>Advani, S.G.</au><au>Berg, D.C.</au><au>Endruweit, A.</au><au>Fauster, E.</au><au>Lomov, S.V.</au><au>Long, A.</au><au>Mitschang, P.</au><au>Abaimov, S.</au><au>Abliz, D.</au><au>Akhatov, I.</au><au>Ali, M.A.</au><au>Allen, T.D.</au><au>Bickerton, S.</au><au>Bodaghi, M.</au><au>Caglar, B.</au><au>Caglar, H.</au><au>Chiminelli, A.</au><au>Correia, N.</au><au>Cosson, B.</au><au>Danzi, M.</au><au>Dittmann, J.</au><au>Ermanni, P.</au><au>Francucci, G.</au><au>George, A.</au><au>Grishaev, V.</au><au>Hancioglu, M.</au><au>Kabachi, M.A.</au><au>Kind, K.</au><au>Deléglise-Lagardère, M.</au><au>Laspalas, M.</au><au>Lebedev, O.V.</au><au>Lizaranzu, M.</au><au>Liotier, P.-J.</au><au>Middendorf, P.</au><au>Morán, J.</au><au>Park, C.-H.</au><au>Pipes, R.B.</au><au>Pucci, M.F.</au><au>Raynal, J.</au><au>Rodriguez, E.S.</au><au>Schledjewski, R.</au><au>Schubnel, R.</au><au>Sharp, N.</au><au>Sims, G.</au><au>Sozer, E.M.</au><au>Sousa, P.</au><au>Thomas, J.</au><au>Umer, R.</au><au>Wijaya, W.</au><au>Willenbacher, B.</au><au>Yong, A.</au><au>Zaremba, S.</au><au>Ziegmann, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>121</volume><spage>100</spage><epage>114</epage><pages>100-114</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>Although good progress was made by two international benchmark exercises on in-plane permeability, existing methods have not yet been standardized. This paper presents the results of a third benchmark exercise using in-plane permeability measurement, based on systems applying the radial unsaturated injection method. 19 participants using 20 systems characterized a non-crimp and a woven fabric at three different fiber volume contents, using a commercially available silicone oil as impregnating fluid. They followed a detailed characterization procedure and also completed a questionnaire on their set-up and analysis methods. Excluding outliers (2 of 20), the average coefficient of variation (cv) between the participant’s results was 32% and 44% (non-crimp and woven fabric), while the average cv for individual participants was 8% and 12%, respectively. This indicates statistically significant variations between the measurement systems. Cavity deformation was identified as a major influence, besides fluid pressure/viscosity measurement, textile variations, and data analysis.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2019.03.006</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7929-4221</orcidid><orcidid>https://orcid.org/0000-0003-1001-2497</orcidid><orcidid>https://orcid.org/0000-0001-7769-8732</orcidid><orcidid>https://orcid.org/0000-0002-7169-5626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-835X |
ispartof | Composites. Part A, Applied science and manufacturing, 2019-06, Vol.121, p.100-114 |
issn | 1359-835X 1878-5840 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02429024v1 |
source | Elsevier ScienceDirect Journals |
subjects | A. Fabrics/textiles B. Permeability D. Process monitoring E. Liquid composite molding E. Resin flow Engineering Sciences Materials |
title | In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-plane%20permeability%20characterization%20of%20engineering%20textiles%20based%20on%20radial%20flow%20experiments:%20A%20benchmark%20exercise&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=May,%20D.&rft.date=2019-06-01&rft.volume=121&rft.spage=100&rft.epage=114&rft.pages=100-114&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2019.03.006&rft_dat=%3Celsevier_hal_p%3ES1359835X1930079X%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359835X1930079X&rfr_iscdi=true |