Beyond scalar, vector, and tensor harmonics in maximally symmetric three-dimensional spaces

We present a comprehensive construction of scalar, vector, and tensor harmonics on maximally symmetric three-dimensional spaces. Our formalism relies on the introduction of spin-weighted spherical harmonics and a generalized helicity basis which, together, are ideal tools for decomposing harmonics i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-12, Vol.100 (12), p.1, Article 123535
Hauptverfasser: Pitrou, Cyril, Pereira, Thiago S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1
container_title Physical review. D
container_volume 100
creator Pitrou, Cyril
Pereira, Thiago S.
description We present a comprehensive construction of scalar, vector, and tensor harmonics on maximally symmetric three-dimensional spaces. Our formalism relies on the introduction of spin-weighted spherical harmonics and a generalized helicity basis which, together, are ideal tools for decomposing harmonics into their radial and angular dependencies. We provide a thorough and self-contained set of expressions and relations for these harmonics. Being general, our formalism also allows us to build harmonics of higher tensor type by recursion among radial functions, and we collect the complete set of recursive relations which can be used. While the formalism is readily adapted to computation of CMB transfer functions, we also collect explicit forms of the radial harmonics which are needed for other cosmological observables. Finally, we show that in curved spaces, normal modes cannot be factorized into a local angular dependence and a unit norm function encoding the orbital dependence of the harmonics, contrary to previous statements in the literature.
doi_str_mv 10.1103/PhysRevD.100.123535
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02423700v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334198880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-bcd9f673d7d0c12acd93eb94dc6511145a41450f3e9744cd50966217e8eb7fa93</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gTcBrwQ7Tz7aNJdzfkwYKKJXXoQsTWlH28ykG_bfmzndzfl4eDgcXoQuCUwJAXb7Wg3hze7upwQioSxl6QkaUS4gAaDy9DgTOEeTENYQxwykIGSEPu_s4LoCB6Mb7W_wzprexa4j620XnMeV9q3rahNw3eFWf9etbpoBh6Ftbe9rg_vKW5sUdRv92nW6wWGjjQ0X6KzUTbCTvz5GH48P7_NFsnx5ep7PlolhadYnK1PIMhOsEAUYQnVcmV1JXpgsJYTwVPNYoGRWCs5NkYLMMkqEze1KlFqyMbo-3K10ozY-_ucH5XStFrOl2jOgnDIBsCPRvTq4G---tjb0au22Pv4cFGWME5nnOUSLHSzjXQjelsezBNQ-dPUfegSR_IbOfgBzxnZF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334198880</pqid></control><display><type>article</type><title>Beyond scalar, vector, and tensor harmonics in maximally symmetric three-dimensional spaces</title><source>American Physical Society Journals</source><creator>Pitrou, Cyril ; Pereira, Thiago S.</creator><creatorcontrib>Pitrou, Cyril ; Pereira, Thiago S.</creatorcontrib><description>We present a comprehensive construction of scalar, vector, and tensor harmonics on maximally symmetric three-dimensional spaces. Our formalism relies on the introduction of spin-weighted spherical harmonics and a generalized helicity basis which, together, are ideal tools for decomposing harmonics into their radial and angular dependencies. We provide a thorough and self-contained set of expressions and relations for these harmonics. Being general, our formalism also allows us to build harmonics of higher tensor type by recursion among radial functions, and we collect the complete set of recursive relations which can be used. While the formalism is readily adapted to computation of CMB transfer functions, we also collect explicit forms of the radial harmonics which are needed for other cosmological observables. Finally, we show that in curved spaces, normal modes cannot be factorized into a local angular dependence and a unit norm function encoding the orbital dependence of the harmonics, contrary to previous statements in the literature.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.100.123535</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Dependence ; Formalism ; General Relativity and Quantum Cosmology ; Helicity ; Mathematical analysis ; Physics ; Spherical harmonics ; Tensors ; Transfer functions</subject><ispartof>Physical review. D, 2019-12, Vol.100 (12), p.1, Article 123535</ispartof><rights>Copyright American Physical Society Dec 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-bcd9f673d7d0c12acd93eb94dc6511145a41450f3e9744cd50966217e8eb7fa93</citedby><cites>FETCH-LOGICAL-c356t-bcd9f673d7d0c12acd93eb94dc6511145a41450f3e9744cd50966217e8eb7fa93</cites><orcidid>0000-0002-6479-364X ; 0000-0002-1747-7847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02423700$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pitrou, Cyril</creatorcontrib><creatorcontrib>Pereira, Thiago S.</creatorcontrib><title>Beyond scalar, vector, and tensor harmonics in maximally symmetric three-dimensional spaces</title><title>Physical review. D</title><description>We present a comprehensive construction of scalar, vector, and tensor harmonics on maximally symmetric three-dimensional spaces. Our formalism relies on the introduction of spin-weighted spherical harmonics and a generalized helicity basis which, together, are ideal tools for decomposing harmonics into their radial and angular dependencies. We provide a thorough and self-contained set of expressions and relations for these harmonics. Being general, our formalism also allows us to build harmonics of higher tensor type by recursion among radial functions, and we collect the complete set of recursive relations which can be used. While the formalism is readily adapted to computation of CMB transfer functions, we also collect explicit forms of the radial harmonics which are needed for other cosmological observables. Finally, we show that in curved spaces, normal modes cannot be factorized into a local angular dependence and a unit norm function encoding the orbital dependence of the harmonics, contrary to previous statements in the literature.</description><subject>Dependence</subject><subject>Formalism</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Helicity</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Spherical harmonics</subject><subject>Tensors</subject><subject>Transfer functions</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOZ-gTcBrwQ7Tz7aNJdzfkwYKKJXXoQsTWlH28ykG_bfmzndzfl4eDgcXoQuCUwJAXb7Wg3hze7upwQioSxl6QkaUS4gAaDy9DgTOEeTENYQxwykIGSEPu_s4LoCB6Mb7W_wzprexa4j620XnMeV9q3rahNw3eFWf9etbpoBh6Ftbe9rg_vKW5sUdRv92nW6wWGjjQ0X6KzUTbCTvz5GH48P7_NFsnx5ep7PlolhadYnK1PIMhOsEAUYQnVcmV1JXpgsJYTwVPNYoGRWCs5NkYLMMkqEze1KlFqyMbo-3K10ozY-_ucH5XStFrOl2jOgnDIBsCPRvTq4G---tjb0au22Pv4cFGWME5nnOUSLHSzjXQjelsezBNQ-dPUfegSR_IbOfgBzxnZF</recordid><startdate>20191219</startdate><enddate>20191219</enddate><creator>Pitrou, Cyril</creator><creator>Pereira, Thiago S.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6479-364X</orcidid><orcidid>https://orcid.org/0000-0002-1747-7847</orcidid></search><sort><creationdate>20191219</creationdate><title>Beyond scalar, vector, and tensor harmonics in maximally symmetric three-dimensional spaces</title><author>Pitrou, Cyril ; Pereira, Thiago S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-bcd9f673d7d0c12acd93eb94dc6511145a41450f3e9744cd50966217e8eb7fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dependence</topic><topic>Formalism</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Helicity</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Spherical harmonics</topic><topic>Tensors</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pitrou, Cyril</creatorcontrib><creatorcontrib>Pereira, Thiago S.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pitrou, Cyril</au><au>Pereira, Thiago S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond scalar, vector, and tensor harmonics in maximally symmetric three-dimensional spaces</atitle><jtitle>Physical review. D</jtitle><date>2019-12-19</date><risdate>2019</risdate><volume>100</volume><issue>12</issue><spage>1</spage><pages>1-</pages><artnum>123535</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We present a comprehensive construction of scalar, vector, and tensor harmonics on maximally symmetric three-dimensional spaces. Our formalism relies on the introduction of spin-weighted spherical harmonics and a generalized helicity basis which, together, are ideal tools for decomposing harmonics into their radial and angular dependencies. We provide a thorough and self-contained set of expressions and relations for these harmonics. Being general, our formalism also allows us to build harmonics of higher tensor type by recursion among radial functions, and we collect the complete set of recursive relations which can be used. While the formalism is readily adapted to computation of CMB transfer functions, we also collect explicit forms of the radial harmonics which are needed for other cosmological observables. Finally, we show that in curved spaces, normal modes cannot be factorized into a local angular dependence and a unit norm function encoding the orbital dependence of the harmonics, contrary to previous statements in the literature.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.100.123535</doi><orcidid>https://orcid.org/0000-0002-6479-364X</orcidid><orcidid>https://orcid.org/0000-0002-1747-7847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2019-12, Vol.100 (12), p.1, Article 123535
issn 2470-0010
2470-0029
language eng
recordid cdi_hal_primary_oai_HAL_hal_02423700v1
source American Physical Society Journals
subjects Dependence
Formalism
General Relativity and Quantum Cosmology
Helicity
Mathematical analysis
Physics
Spherical harmonics
Tensors
Transfer functions
title Beyond scalar, vector, and tensor harmonics in maximally symmetric three-dimensional spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20scalar,%20vector,%20and%20tensor%20harmonics%20in%20maximally%20symmetric%20three-dimensional%20spaces&rft.jtitle=Physical%20review.%20D&rft.au=Pitrou,%20Cyril&rft.date=2019-12-19&rft.volume=100&rft.issue=12&rft.spage=1&rft.pages=1-&rft.artnum=123535&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.100.123535&rft_dat=%3Cproquest_hal_p%3E2334198880%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334198880&rft_id=info:pmid/&rfr_iscdi=true