THE GAME OPERATOR ACTING ON WADGE CLASSES OF BOREL SETS

We study the behavior of the game operator Ə on Wadge classes of Borel sets. In particular we prove that the classical Moschovakis results still hold in this setting. We also characterize Wadge classes Γ for which the class ƏΓ has the substitution property. An effective variation of these results sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2019-09, Vol.84 (3), p.1224-1239
Hauptverfasser: DEBS, GABRIEL, RAYMOND, JEAN SAINT
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the behavior of the game operator Ə on Wadge classes of Borel sets. In particular we prove that the classical Moschovakis results still hold in this setting. We also characterize Wadge classes Γ for which the class ƏΓ has the substitution property. An effective variation of these results shows that for all 1 ≤ η < ω 1 CK and 2 ≤ ξ < ω 1 CK , Ə ( D η ( ∑ ξ 0 ) ) is a Spector class while Ə ( D 2 ( ∑ 1 0 ) ) is not.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2019.40