THE GAME OPERATOR ACTING ON WADGE CLASSES OF BOREL SETS
We study the behavior of the game operator Ə on Wadge classes of Borel sets. In particular we prove that the classical Moschovakis results still hold in this setting. We also characterize Wadge classes Γ for which the class ƏΓ has the substitution property. An effective variation of these results sh...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2019-09, Vol.84 (3), p.1224-1239 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the behavior of the game operator Ə on Wadge classes of Borel sets. In particular we prove that the classical Moschovakis results still hold in this setting. We also characterize Wadge classes Γ for which the class ƏΓ has the substitution property. An effective variation of these results shows that for all
1
≤
η
<
ω
1
CK
and
2
≤
ξ
<
ω
1
CK
,
Ə
(
D
η
(
∑
ξ
0
)
)
is a Spector class while
Ə
(
D
2
(
∑
1
0
)
)
is not. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2019.40 |