Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control
Instead of the usual sputtered anhydrous tungsten oxide thin films, a powder of monohydrated tungsten oxide (WO3.H2O) was used for the making of an electrochromic infrared emissivity modulator. The WO3.H2O powder was embedded in a porous plastic matrix before being laminated with other appropriate l...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2002-02, Vol.91 (3), p.1589-1594 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Instead of the usual sputtered anhydrous tungsten oxide thin films, a powder of monohydrated tungsten oxide (WO3.H2O) was used for the making of an electrochromic infrared emissivity modulator. The WO3.H2O powder was embedded in a porous plastic matrix before being laminated with other appropriate layers of the battery-like device, leading then to a complete flexible emissivity modulator. The widely open structure of the hydrated tungsten oxide makes lithium intercalation easier, which is particularly suitable for the realization of plasticized devices. Compared to a classical battery assembly, a porous plastic graphite layer laminated with a conductive grid was sandwiched between the WO3.H2O and the electrolyte layers. Such an original device allowed both a perfect uniformity in current collection and a sufficient porosity for the liquid electrolyte displacement. The complete device demonstrated a satisfying electrochemical behavior under 1 mV/s potential sweeps, allowing the insertion of a large amount of lithium ions into the WO3.H2O structure. Hemispherical reflectance measurements were carried out both over the VIS/NIR (0.4–2.5 μm) and the mid-infrared (2.5–25 μm) spectral ranges. Reflectance over the 2.5–25 μm spectral range was found to switch from 2% to 32% upon intercalation of 0.65 Li per tungsten. This value is comparable to previous literature results obtained for rigid devices. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.1430543 |