Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO 2 monitoring in urban areas
CO2 emission estimates from urban areas can be obtained with a network of in situ instruments measuring atmospheric CO2 combined with high-resolution (inverse) transport modelling. Because the distribution of CO2 emissions is highly heterogeneous in space and variable in time in urban areas, gradien...
Gespeichert in:
Veröffentlicht in: | Atmospheric measurement techniques 2019-05, Vol.12 (5), p.2665-2677 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CO2 emission estimates from urban areas can
be obtained with a network of in situ instruments measuring atmospheric
CO2 combined with high-resolution (inverse) transport modelling. Because
the distribution of CO2 emissions is highly heterogeneous in space and
variable in time in urban areas, gradients of atmospheric CO2 (here, dry
air mole fractions) need to be measured by numerous instruments placed at
multiple locations around and possibly within these urban areas. This calls
for the development of lower-cost medium-precision sensors to allow a
deployment at required densities. Medium precision is here set to be a random
error (uncertainty) on hourly measurements of ±1 ppm or less, a
precision requirement based on previous studies of network design in urban
areas. Here we present tests of newly developed non-dispersive infrared (NDIR) sensors manufactured by
Senseair AB performed in the laboratory and at actual field stations, the
latter for CO2 dry air mole fractions in the Paris area. The lower-cost
medium-precision sensors are shown to be sensitive to atmospheric pressure
and temperature conditions. The sensors respond linearly to CO2 when
measuring calibration tanks, but the regression slope between measured and
assigned CO2 differs between individual sensors and changes with time.
In addition to pressure and temperature variations, humidity impacts the
measurement of CO2, with all of these factors resulting in systematic errors.
In the field, an empirical calibration strategy is proposed based on parallel
measurements with the lower-cost medium-precision sensors and a
high-precision instrument cavity ring-down instrument for 6 months. The
empirical calibration method consists of using a multivariable regression
approach, based on predictors of air temperature, pressure and humidity. This
error model shows good performances to explain the observed drifts of the
lower-cost medium-precision sensors on timescales of up to 1–2 months when
trained against 1–2 weeks of high-precision instrument time series. Residual
errors are contained within the ±1 ppm target, showing the feasibility
of using networks of HPP3 instruments for urban CO2 networks. Provided
that they could be regularly calibrated against one anchor reference
high-precision instrument these sensors could thus collect the CO2 (dry
air) mole fraction data required as for top-down CO2 flux estimates. |
---|---|
ISSN: | 1867-8548 1867-1381 1867-8548 |
DOI: | 10.5194/amt-12-2665-2019 |