How many weights can a linear code have?

We study the combinatorial function L ( k ,  q ),  the maximum number of nonzero weights a linear code of dimension k over F q can have. We determine it completely for q = 2 , and for k = 2 , and provide upper and lower bounds in the general case when both k and q are ≥ 3 . A refinement L ( n ,  k ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2019-01, Vol.87 (1), p.87-95
Hauptverfasser: Shi, Minjia, Zhu, Hongwei, Solé, Patrick, Cohen, Gérard D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the combinatorial function L ( k ,  q ),  the maximum number of nonzero weights a linear code of dimension k over F q can have. We determine it completely for q = 2 , and for k = 2 , and provide upper and lower bounds in the general case when both k and q are ≥ 3 . A refinement L ( n ,  k ,  q ),  as well as nonlinear analogues N ( M ,  q ) and N ( n ,  M ,  q ),  are also introduced and studied.
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-018-0488-z