How many weights can a linear code have?
We study the combinatorial function L ( k , q ), the maximum number of nonzero weights a linear code of dimension k over F q can have. We determine it completely for q = 2 , and for k = 2 , and provide upper and lower bounds in the general case when both k and q are ≥ 3 . A refinement L ( n , k ,...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2019-01, Vol.87 (1), p.87-95 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the combinatorial function
L
(
k
,
q
), the maximum number of nonzero weights a linear code of dimension
k
over
F
q
can have. We determine it completely for
q
=
2
,
and for
k
=
2
,
and provide upper and lower bounds in the general case when both
k
and
q
are
≥
3
.
A refinement
L
(
n
,
k
,
q
), as well as nonlinear analogues
N
(
M
,
q
) and
N
(
n
,
M
,
q
), are also introduced and studied. |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-018-0488-z |