Transient and slim versus recurrent and fat: Random walks and the trees they grow

The no restart random walk (NRRW) is a random network growth model driven by a random walk that builds the graph while moving on it, adding and connecting a new leaf node to the current position of the walker every s steps. We show a fundamental dichotomy in NRRW with respect to the parity of s: for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2019-09, Vol.56 (3), p.769-786
Hauptverfasser: Iacobelli, Giulio, Figueiredo, Daniel R., Neglia, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The no restart random walk (NRRW) is a random network growth model driven by a random walk that builds the graph while moving on it, adding and connecting a new leaf node to the current position of the walker every s steps. We show a fundamental dichotomy in NRRW with respect to the parity of s: for ${s}=1$ we prove that the random walk is transient and non-leaf nodes have degrees bounded above by an exponential distribution; for s even we prove that the random walk is recurrent and non-leaf nodes have degrees bounded below by a power law distribution. These theoretical findings highlight and confirm the diverse and rich behaviour of NRRW observed empirically.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2019.43