Implications of sepiolite dehydration for earthquake nucleation in the Galera Fault Zone: A thermodynamic approach

A new thermodynamic model for the Mg-phyllosilicate sepiolite was developed and used to calculate its P-T stability conditions and water content for different bulk rock compositions. The standard-state thermodynamic properties, entropy (S°) and enthalpy (H°), were initially estimated by oxide summat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geochemistry 2018-02, Vol.89, p.219-228
Hauptverfasser: Sánchez-Roa, Catalina, Vidal, Olivier, Jiménez-Millán, Juan, Nieto, Fernando, Faulkner, Daniel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new thermodynamic model for the Mg-phyllosilicate sepiolite was developed and used to calculate its P-T stability conditions and water content for different bulk rock compositions. The standard-state thermodynamic properties, entropy (S°) and enthalpy (H°), were initially estimated by oxide summation taking into account the different entropic and enthalpic contributions of the three types of water in sepiolite: zeolitic water, bound water, and structural OH groups. The starting model was then refined with experimental data. The dehydration process follows a step function that allowed us to define “end-members” with decreasing hydration states in a theoretical solid solution. The stability field of sepiolite is ultimately limited by the reaction sepiolite = talc + quartz + H2O, which is located at about 325 °C at 1–500 MPa. The large thermodynamic stability field of this clay mineral suggests that it could control the mechanical behaviour of crustal faults to 325 °C. The refined model was then applied to the natural case of the Galera Fault Zone (SE Spain) using thermogravimetric analysis and X-ray fluorescence data of the bulk rock composition of the fault core gouge, which is mainly composed of sepiolite. The dehydration of sepiolite at T 
ISSN:0883-2927
1872-9134
DOI:10.1016/j.apgeochem.2017.11.013