Direct Measurement of Sequential Folding Pathway and Energy Landscape of Human Telomeric G‑quadruplex Structures
Single-stranded guanine-rich sequences fold into compact G-quadruplexes. Although G-triplexes have been proposed and demonstrated as intermediates in the folding of G-quadruplexes, there is still a debate on their folding pathways. In this work, we employed magnetic tweezers to investigate the foldi...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2013-05, Vol.135 (17), p.6423-6426 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single-stranded guanine-rich sequences fold into compact G-quadruplexes. Although G-triplexes have been proposed and demonstrated as intermediates in the folding of G-quadruplexes, there is still a debate on their folding pathways. In this work, we employed magnetic tweezers to investigate the folding kinetics of single human telomeric G-quadruplexes in 100 mM Na+ buffer. The results are consistent with a model in which the G-triplex is an in-pathway intermediate in the folding of the G-quadruplex. By finely tuning the force exerted on the G-quadruplex, we observed reversible transitions from the G-quadruplex to the G-triplex as well as from the G-triplex to the unfolded coil when the force was increased from 26 to 39 pN. The energy landscape derived from the probability distribution shows clearly that the G-quadruplex goes through an intermediate when it is unfolded, and vice versa. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja4019176 |