Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating

In the present work, the repair of CM-247LC superalloy has been investigated by using a laser cladding process. Since this material is well known for its high hot-cracking susceptibility in Heat Affected Zone during welding, repairing is quite challenging. In a first stage, a detailed investigation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2020-03, Vol.277, p.116461, Article 116461
Hauptverfasser: Bidron, G., Doghri, A., Malot, T., Fournier-dit-Chabert, F., Thomas, M., Peyre, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, the repair of CM-247LC superalloy has been investigated by using a laser cladding process. Since this material is well known for its high hot-cracking susceptibility in Heat Affected Zone during welding, repairing is quite challenging. In a first stage, a detailed investigation of the effect of cladding parameters on the crack susceptibility was carried out on coupons that received a low pre-heating condition. However, despite a reduction of crack sensitivity for low energy inputs, this material has systematically shown some evidence of cracking in the HAZ. In a second stage, attempts were made to reduce crack defects by using an induction preheating, with higher temperatures in the range of 800–1100 °C. With the highest pre-heating temperatures near 1100 °C, the partial dissolution of large γ’ precipitates, combined with re-precipitation of secondary and smaller γ' precipitates were helpful to prevent hot cracking.
ISSN:0924-0136
1873-4774
DOI:10.1016/j.jmatprotec.2019.116461