The out-of-core KNN awakens: the light side of computation force on large datasets
K-nearest neighbors (KNN) is a crucial tool for many applications, e.g. recommender systems, image classification and web-related applications. However, KNN is a resource greedy operation particularly for large datasets. We focus on the challenge of KNN computation over large datasets on a single co...
Gespeichert in:
Veröffentlicht in: | Computing 2019-01, Vol.101 (1), p.19-38 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | K-nearest neighbors (KNN) is a crucial tool for many applications, e.g. recommender systems, image classification and web-related applications. However, KNN is a resource greedy operation particularly for large datasets. We focus on the challenge of KNN computation over large datasets on a single commodity PC with limited memory. We propose a novel approach to compute KNN on large datasets by leveraging both disk and main memory efficiently. The main rationale of our approach is to minimize random accesses to disk, maximize sequential accesses to data and efficient usage of only the available memory. We evaluate our approach on large datasets, in terms of performance and memory consumption. The evaluation shows that our approach requires only 7% of the time needed by an in-memory baseline to compute a KNN graph. |
---|---|
ISSN: | 0010-485X 1436-5057 |
DOI: | 10.1007/s00607-018-0616-7 |