Convex cocompactness in pseudo-Riemannian hyperbolic spaces

Anosov representations of word hyperbolic groups into higher-rank semisimple Lie groups are representations with finite kernel and discrete image that have strong analogies with convex cocompact representations into rank-one Lie groups. However, the most naive analogy fails: generically, Anosov repr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2018-02, Vol.192 (1), p.87-126
Hauptverfasser: Danciger, Jeffrey, Guéritaud, François, Kassel, Fanny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anosov representations of word hyperbolic groups into higher-rank semisimple Lie groups are representations with finite kernel and discrete image that have strong analogies with convex cocompact representations into rank-one Lie groups. However, the most naive analogy fails: generically, Anosov representations do not act properly and cocompactly on a convex set in the associated Riemannian symmetric space. We study representations into projective indefinite orthogonal groups PO ( p , q ) by considering their action on the associated pseudo-Riemannian hyperbolic space H p , q - 1 in place of the Riemannian symmetric space. Following work of Barbot and Mérigot in anti-de Sitter geometry, we find an intimate connection between Anosov representations and a natural notion of convex cocompactness in this setting.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-017-0294-1