NUMERICAL STABILITY OF A HYBRID METHOD FOR PRICING OPTIONS
We develop and study stability properties of a hybrid approximation of functionals of the Bates jump model with stochastic interest rate that uses a tree method in the direction of the volatility and the interest rate and a finite-difference approach in order to handle the underlying asset price pro...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical and applied finance 2019-11, Vol.22 (7), p.1950036 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop and study stability properties of a hybrid approximation of functionals of the Bates jump model with stochastic interest rate that uses a tree method in the direction of the volatility and the interest rate and a finite-difference approach in order to handle the underlying asset price process. We also propose hybrid simulations for the model, following a binomial tree in the direction of both the volatility and the interest rate, and a space-continuous approximation for the underlying asset price process coming from a Euler–Maruyama type scheme. We test our numerical schemes by computing European and American option prices. |
---|---|
ISSN: | 0219-0249 1793-6322 0219-0249 |
DOI: | 10.1142/S0219024919500365 |