Measures of maximal entropy for surface diffeomorphisms
We show that $C^\infty$ surface diffeomorphisms with positive topological entropy have at most finitely many ergodic measures of maximal entropy in general, and at most one in the topologically transitive case. This answers a question of Newhouse, who proved that such measures always exist. To do th...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics 2022-03, Vol.195 (2), p.421-508 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that $C^\infty$ surface diffeomorphisms with positive topological entropy have at most finitely many ergodic measures of maximal entropy in general, and at most one in the topologically transitive case. This answers a question of Newhouse, who proved that such measures always exist. To do this we generalize Smale's spectral decomposition theorem to non-uniformly hyperbolic surface diffeomorphisms, we introduce homoclinic classes of measures, and we study their properties using codings by irreducible countable state Markov shifts. |
---|---|
ISSN: | 0003-486X |
DOI: | 10.4007/annals.2022.195.2.2 |