Nanoimprinting and tapering of chalcogenide photonic crystal fibers for cascaded supercontinuum generation
Improved long-wavelength transmission and supercontinuum (SC) generation is demonstrated by antireflective (AR) nanoimprinting and tapering of chalcogenide photonic crystal fibers (PCFs). Using a SC source input spanning from 1 to 4.2 μm, the total transmission of a 15 μm core diameter PCF was impro...
Gespeichert in:
Veröffentlicht in: | Optics letters 2019-11, Vol.44 (22), p.5505-5508 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Improved long-wavelength transmission and supercontinuum (SC) generation is demonstrated by antireflective (AR) nanoimprinting and tapering of chalcogenide photonic crystal fibers (PCFs). Using a SC source input spanning from 1 to 4.2 μm, the total transmission of a 15 μm core diameter PCF was improved from ∼53% to ∼74% by nanoimprinting of AR structures on both input and output facets of the fiber. Through a combined effect of reduced reflection and redshifting of the spectrum to 5 μm, the relative transmission of light >3.5 μm in the same fiber was increased by 60.2%. Further extension of the spectrum to 8 μm was achieved using tapered fibers. The spectral broadening dynamics and output power were investigated using different taper parameters and pulse repetition rates. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.44.005505 |