Nontransitive Decomposable Conjoint Measurement
Traditional models of conjoint measurement look for an additive representation of transitive preferences. They have been generalized in two directions. Nontransitive additive conjoint measurement models allow for nontransitive preferences while retaining the additivity feature of traditional models....
Gespeichert in:
Veröffentlicht in: | Journal of mathematical psychology 2002-12, Vol.46 (6), p.677-703 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional models of conjoint measurement look for an additive representation of transitive preferences. They have been generalized in two directions. Nontransitive additive conjoint measurement models allow for nontransitive preferences while retaining the additivity feature of traditional models. Decomposable conjoint measurement models are transitive but replace additivity by a mere decomposability requirement. This paper presents generalizations of conjoint measurement models combining these two aspects. This allows us to propose a simple axiomatic treatment that shows the pure consequences of several cancellation conditions used in traditional models. These nontran- sitive decomposable conjoint measurement models encompass a large number of aggregation rules that have been introduced in the literature. |
---|---|
ISSN: | 0022-2496 1096-0880 |
DOI: | 10.1006/jmps.2002.1419 |