Even faster integer multiplication

We give a new algorithm for the multiplication of n-bit integers in the bit complexity model, which is asymptotically faster than all previously known algorithms. More precisely, we prove that two n-bit integers can be multiplied in time O(nlognKlog∗n), where K=8 and log∗n=min{k∈N:log…k×logn⩽1}. Ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Complexity 2016-10, Vol.36, p.1-30
Hauptverfasser: Harvey, David, van der Hoeven, Joris, Lecerf, Grégoire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a new algorithm for the multiplication of n-bit integers in the bit complexity model, which is asymptotically faster than all previously known algorithms. More precisely, we prove that two n-bit integers can be multiplied in time O(nlognKlog∗n), where K=8 and log∗n=min{k∈N:log…k×logn⩽1}. Assuming standard conjectures about the distribution of Mersenne primes, we give yet another algorithm that achieves K=4. The fastest previously known algorithm was due to Fürer, who proved the existence of a complexity bound of the above form for some finite K. We show that an optimised variant of Fürer’s algorithm achieves only K=16, suggesting that our new algorithm is faster than Fürer’s by a factor of 2log∗n.
ISSN:0885-064X
1090-2708
DOI:10.1016/j.jco.2016.03.001