Faster integer multiplication using plain vanilla FFT primes
Assuming a conjectural upper bound for the least prime in an arithmetic progression, we show that n-bit integers may be multiplied in O(n \log n\, 4^{\log ^* n}) bit operations.
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2019-01, Vol.88 (315), p.501-514 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 315 |
container_start_page | 501 |
container_title | Mathematics of computation |
container_volume | 88 |
creator | HARVEY, DAVID VAN DER HOEVEN, JORIS |
description | Assuming a conjectural upper bound for the least prime in an arithmetic progression, we show that n-bit integers may be multiplied in O(n \log n\, 4^{\log ^* n}) bit operations. |
doi_str_mv | 10.1090/mcom/3328 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02350423v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90025046</jstor_id><sourcerecordid>90025046</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-7d296fb0f32869b70725f44bab4a52eeac5b5f920c26eb769a902c62972838ef3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFYP_gFCDl48xE72e8FLKY0VCl7qeZnE3bolHyWbFvzvTajUm6cH837zZniE3GfwnIGBWV229Ywxqi_IJAOtU6k5vSQTACpSoTJ9TW5i3AFAJoWakJccY--6JDS92w5aH6o-7KtQYh_aJjnE0GyTfYWhSY7YhKrCJM83yb4LtYu35MpjFd3dr07JR77cLFbp-v31bTFfp8i46VP1SY30BfjhLWkKBYoKz3mBBUdBncNSFMIbCiWVrlDSoAFaSmoU1Uw7z6bk6ZT7hZUdT2P3bVsMdjVf23EGlAnglB2zP7bs2hg7588LGdixIjtWZMeKBvbhxO5i33Zn0IxlAZeD_3jysY7_xPwASPtuAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Faster integer multiplication using plain vanilla FFT primes</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>American Mathematical Society Publications</source><creator>HARVEY, DAVID ; VAN DER HOEVEN, JORIS</creator><creatorcontrib>HARVEY, DAVID ; VAN DER HOEVEN, JORIS</creatorcontrib><description>Assuming a conjectural upper bound for the least prime in an arithmetic progression, we show that n-bit integers may be multiplied in O(n \log n\, 4^{\log ^* n}) bit operations.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3328</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Computer Science ; Mathematical Software</subject><ispartof>Mathematics of computation, 2019-01, Vol.88 (315), p.501-514</ispartof><rights>Copyright 2018, David Harvey and Joris van der Hoeven</rights><rights>2018 American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-7d296fb0f32869b70725f44bab4a52eeac5b5f920c26eb769a902c62972838ef3</citedby><orcidid>0000-0003-2244-1897 ; 0000-0002-6066-6707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2019-88-315/S0025-5718-2018-03328-2/S0025-5718-2018-03328-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2019-88-315/S0025-5718-2018-03328-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,776,780,881,23304,23308,27903,27904,77583,77585,77593,77595</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02350423$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>HARVEY, DAVID</creatorcontrib><creatorcontrib>VAN DER HOEVEN, JORIS</creatorcontrib><title>Faster integer multiplication using plain vanilla FFT primes</title><title>Mathematics of computation</title><description>Assuming a conjectural upper bound for the least prime in an arithmetic progression, we show that n-bit integers may be multiplied in O(n \log n\, 4^{\log ^* n}) bit operations.</description><subject>Computer Science</subject><subject>Mathematical Software</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFYP_gFCDl48xE72e8FLKY0VCl7qeZnE3bolHyWbFvzvTajUm6cH837zZniE3GfwnIGBWV229Ywxqi_IJAOtU6k5vSQTACpSoTJ9TW5i3AFAJoWakJccY--6JDS92w5aH6o-7KtQYh_aJjnE0GyTfYWhSY7YhKrCJM83yb4LtYu35MpjFd3dr07JR77cLFbp-v31bTFfp8i46VP1SY30BfjhLWkKBYoKz3mBBUdBncNSFMIbCiWVrlDSoAFaSmoU1Uw7z6bk6ZT7hZUdT2P3bVsMdjVf23EGlAnglB2zP7bs2hg7588LGdixIjtWZMeKBvbhxO5i33Zn0IxlAZeD_3jysY7_xPwASPtuAQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>HARVEY, DAVID</creator><creator>VAN DER HOEVEN, JORIS</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid><orcidid>https://orcid.org/0000-0002-6066-6707</orcidid></search><sort><creationdate>20190101</creationdate><title>Faster integer multiplication using plain vanilla FFT primes</title><author>HARVEY, DAVID ; VAN DER HOEVEN, JORIS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-7d296fb0f32869b70725f44bab4a52eeac5b5f920c26eb769a902c62972838ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Science</topic><topic>Mathematical Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HARVEY, DAVID</creatorcontrib><creatorcontrib>VAN DER HOEVEN, JORIS</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HARVEY, DAVID</au><au>VAN DER HOEVEN, JORIS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster integer multiplication using plain vanilla FFT primes</atitle><jtitle>Mathematics of computation</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>88</volume><issue>315</issue><spage>501</spage><epage>514</epage><pages>501-514</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>Assuming a conjectural upper bound for the least prime in an arithmetic progression, we show that n-bit integers may be multiplied in O(n \log n\, 4^{\log ^* n}) bit operations.</abstract><pub>American Mathematical Society</pub><doi>10.1090/mcom/3328</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid><orcidid>https://orcid.org/0000-0002-6066-6707</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5718 |
ispartof | Mathematics of computation, 2019-01, Vol.88 (315), p.501-514 |
issn | 0025-5718 1088-6842 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02350423v1 |
source | American Mathematical Society Publications (Freely Accessible); American Mathematical Society Publications |
subjects | Computer Science Mathematical Software |
title | Faster integer multiplication using plain vanilla FFT primes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20integer%20multiplication%20using%20plain%20vanilla%20FFT%20primes&rft.jtitle=Mathematics%20of%20computation&rft.au=HARVEY,%20DAVID&rft.date=2019-01-01&rft.volume=88&rft.issue=315&rft.spage=501&rft.epage=514&rft.pages=501-514&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3328&rft_dat=%3Cjstor_hal_p%3E90025046%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90025046&rfr_iscdi=true |