In Situ IR‐ATR Study of the Interaction of Nitrogen Heteroaromatic Compounds with HY Zeolites: Experimental and Theoretical Approaches

In the present work, the liquid‐solid interaction of liquid N‐heteroaromatic compounds, commonly present in the petroleum feedstocks of the refineries, with Y zeolites used as hydrocracking catalysts was followed using IR‐ATR spectroscopy. The inhibition of the zeolitic acid sites by strongly basic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2020-02, Vol.12 (4), p.1095-1108
Hauptverfasser: Khalil, Ibrahim, Celis‐Cornejo, Carlos M., Thomas, Karine, Bazin, Philippe, Travert, Arnaud, Pérez‐Martínez, David J., Baldovino‐Medrano, Víctor G., Paul, Jean François, Maugé, Françoise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1108
container_issue 4
container_start_page 1095
container_title ChemCatChem
container_volume 12
creator Khalil, Ibrahim
Celis‐Cornejo, Carlos M.
Thomas, Karine
Bazin, Philippe
Travert, Arnaud
Pérez‐Martínez, David J.
Baldovino‐Medrano, Víctor G.
Paul, Jean François
Maugé, Françoise
description In the present work, the liquid‐solid interaction of liquid N‐heteroaromatic compounds, commonly present in the petroleum feedstocks of the refineries, with Y zeolites used as hydrocracking catalysts was followed using IR‐ATR spectroscopy. The inhibition of the zeolitic acid sites by strongly basic pyridine and weakly basic indole was highlighted using a continuous flow IR‐ATR cell. Results were assessed by Density Functional Theory calculations to compute the vibrational frequencies of pyridine and indole according to the nature of the interaction sites: silanol groups or acidic OH groups. The study points out that IR‐ATR spectroscopy opens the way for investigating the interaction modes of low vapor pressure molecules (e. g. indole) that present an inherent difficulty to be operated in the gas phase. Moreover, the IR‐ATR makes possible the analysis of the little‐explored low wavenumber zone (
doi_str_mv 10.1002/cctc.201901560
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02347138v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359240268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3910-d438f124ddc08d5cd1e47745a94b94510c3db3c26706876ec19b81aced8a98933</originalsourceid><addsrcrecordid>eNqFkb9PGzEcxU9VkZqGrp0tdWJIsM_3w-4WnYBEikAKYaCL5djf9Iwu58P2EbIxMvI38pfgKCgdO_nrp897etJLkp8EjwnG6blSQY1TTDgmeYG_JAPCinJEGedfjzfD35Lv3j9gXHBa5oPkddaiWxN6NFu8v7xNlgt0G3q9Q3aNQg1o1gZwUgVj2710bYKzf6FFU4i6lc5uZDAKVXbT2b7VHm1NqNH0Hv0B25gA_je6eO7AmQ20QTZIthota7AOoi3-J10XY1QN_jQ5WcvGw4_Pd5jcXV4sq-lofnM1qybzkaKc4JHOKFuTNNNaYaZzpQlkZZnlkmcrnuUEK6pXVKVFiQtWFqAIXzEiFWgmOeOUDpOzQ24tG9HFYtLthJVGTCdzsddwSrOSUPZEIvvrwMaSjz34IB5s79pYT6Q052mG04JFanyglLPeO1gfYwkW-2XEfhlxXCYa-MGwNQ3s_kOLqlpW_7wfESiTTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359240268</pqid></control><display><type>article</type><title>In Situ IR‐ATR Study of the Interaction of Nitrogen Heteroaromatic Compounds with HY Zeolites: Experimental and Theoretical Approaches</title><source>Access via Wiley Online Library</source><creator>Khalil, Ibrahim ; Celis‐Cornejo, Carlos M. ; Thomas, Karine ; Bazin, Philippe ; Travert, Arnaud ; Pérez‐Martínez, David J. ; Baldovino‐Medrano, Víctor G. ; Paul, Jean François ; Maugé, Françoise</creator><creatorcontrib>Khalil, Ibrahim ; Celis‐Cornejo, Carlos M. ; Thomas, Karine ; Bazin, Philippe ; Travert, Arnaud ; Pérez‐Martínez, David J. ; Baldovino‐Medrano, Víctor G. ; Paul, Jean François ; Maugé, Françoise</creatorcontrib><description>In the present work, the liquid‐solid interaction of liquid N‐heteroaromatic compounds, commonly present in the petroleum feedstocks of the refineries, with Y zeolites used as hydrocracking catalysts was followed using IR‐ATR spectroscopy. The inhibition of the zeolitic acid sites by strongly basic pyridine and weakly basic indole was highlighted using a continuous flow IR‐ATR cell. Results were assessed by Density Functional Theory calculations to compute the vibrational frequencies of pyridine and indole according to the nature of the interaction sites: silanol groups or acidic OH groups. The study points out that IR‐ATR spectroscopy opens the way for investigating the interaction modes of low vapor pressure molecules (e. g. indole) that present an inherent difficulty to be operated in the gas phase. Moreover, the IR‐ATR makes possible the analysis of the little‐explored low wavenumber zone (&lt;800 cm−1), that presents informative vibrational modes on the adsorption mode of N‐molecules. Hence, this work points out that for pyridine, the bands at 686 and 727 cm−1 are characteristic of pyridinium species formed over zeolitic OH groups, meanwhile, the signals at 703 and 750 cm−1, are associated to pyridine in interaction with silanol groups. The IR‐ATR study reveals that indole, a weakly basic compound, can be protonated on acidic Y zeolites as unambiguously evidenced by the formation of the bands at 1617, 1608, 1543 and 705 cm−1. Findings here exposed are crucial for studying inhibitory effects exerted by weak nitrogenated compounds on acidic materials during hydrocracking processes. Molecular modelling: The interaction modes leading to inhibit the hydrocracking catalysts (e. g. zeolites) by the weakly basic nitrogenates, such as indole, were not yet fully understood. The low vapor pressure of these molecules was presenting the inherent difficulty to their study in the gas phase setups. In this work we evidenced, by combining liquid‐solid IR‐ATR experiments with Density Functional Theory calculations, the vibrational frequencies of the different interaction modes of pyridine and indole with the zeolitic acid sites.</description><identifier>ISSN: 1867-3880</identifier><identifier>ISSN: 1867-3899</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201901560</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Brønsted acidity ; Chemical Sciences ; Continuous flow ; Density functional theory ; Heterocyclic compounds ; Hydrocracking ; Infrared spectroscopy ; liquid-solid interface ; molecular modeling ; Nitrogen ; organonitrogen compounds ; Refineries ; silanol group ; Spectrum analysis ; Vapor phases ; Vapor pressure ; Wavelengths ; zeolite ; Zeolites</subject><ispartof>ChemCatChem, 2020-02, Vol.12 (4), p.1095-1108</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3910-d438f124ddc08d5cd1e47745a94b94510c3db3c26706876ec19b81aced8a98933</citedby><cites>FETCH-LOGICAL-c3910-d438f124ddc08d5cd1e47745a94b94510c3db3c26706876ec19b81aced8a98933</cites><orcidid>0000-0002-9579-8910 ; 0000-0003-1194-0818 ; 0000-0003-1935-1428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201901560$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201901560$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02347138$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalil, Ibrahim</creatorcontrib><creatorcontrib>Celis‐Cornejo, Carlos M.</creatorcontrib><creatorcontrib>Thomas, Karine</creatorcontrib><creatorcontrib>Bazin, Philippe</creatorcontrib><creatorcontrib>Travert, Arnaud</creatorcontrib><creatorcontrib>Pérez‐Martínez, David J.</creatorcontrib><creatorcontrib>Baldovino‐Medrano, Víctor G.</creatorcontrib><creatorcontrib>Paul, Jean François</creatorcontrib><creatorcontrib>Maugé, Françoise</creatorcontrib><title>In Situ IR‐ATR Study of the Interaction of Nitrogen Heteroaromatic Compounds with HY Zeolites: Experimental and Theoretical Approaches</title><title>ChemCatChem</title><description>In the present work, the liquid‐solid interaction of liquid N‐heteroaromatic compounds, commonly present in the petroleum feedstocks of the refineries, with Y zeolites used as hydrocracking catalysts was followed using IR‐ATR spectroscopy. The inhibition of the zeolitic acid sites by strongly basic pyridine and weakly basic indole was highlighted using a continuous flow IR‐ATR cell. Results were assessed by Density Functional Theory calculations to compute the vibrational frequencies of pyridine and indole according to the nature of the interaction sites: silanol groups or acidic OH groups. The study points out that IR‐ATR spectroscopy opens the way for investigating the interaction modes of low vapor pressure molecules (e. g. indole) that present an inherent difficulty to be operated in the gas phase. Moreover, the IR‐ATR makes possible the analysis of the little‐explored low wavenumber zone (&lt;800 cm−1), that presents informative vibrational modes on the adsorption mode of N‐molecules. Hence, this work points out that for pyridine, the bands at 686 and 727 cm−1 are characteristic of pyridinium species formed over zeolitic OH groups, meanwhile, the signals at 703 and 750 cm−1, are associated to pyridine in interaction with silanol groups. The IR‐ATR study reveals that indole, a weakly basic compound, can be protonated on acidic Y zeolites as unambiguously evidenced by the formation of the bands at 1617, 1608, 1543 and 705 cm−1. Findings here exposed are crucial for studying inhibitory effects exerted by weak nitrogenated compounds on acidic materials during hydrocracking processes. Molecular modelling: The interaction modes leading to inhibit the hydrocracking catalysts (e. g. zeolites) by the weakly basic nitrogenates, such as indole, were not yet fully understood. The low vapor pressure of these molecules was presenting the inherent difficulty to their study in the gas phase setups. In this work we evidenced, by combining liquid‐solid IR‐ATR experiments with Density Functional Theory calculations, the vibrational frequencies of the different interaction modes of pyridine and indole with the zeolitic acid sites.</description><subject>Brønsted acidity</subject><subject>Chemical Sciences</subject><subject>Continuous flow</subject><subject>Density functional theory</subject><subject>Heterocyclic compounds</subject><subject>Hydrocracking</subject><subject>Infrared spectroscopy</subject><subject>liquid-solid interface</subject><subject>molecular modeling</subject><subject>Nitrogen</subject><subject>organonitrogen compounds</subject><subject>Refineries</subject><subject>silanol group</subject><subject>Spectrum analysis</subject><subject>Vapor phases</subject><subject>Vapor pressure</subject><subject>Wavelengths</subject><subject>zeolite</subject><subject>Zeolites</subject><issn>1867-3880</issn><issn>1867-3899</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkb9PGzEcxU9VkZqGrp0tdWJIsM_3w-4WnYBEikAKYaCL5djf9Iwu58P2EbIxMvI38pfgKCgdO_nrp897etJLkp8EjwnG6blSQY1TTDgmeYG_JAPCinJEGedfjzfD35Lv3j9gXHBa5oPkddaiWxN6NFu8v7xNlgt0G3q9Q3aNQg1o1gZwUgVj2710bYKzf6FFU4i6lc5uZDAKVXbT2b7VHm1NqNH0Hv0B25gA_je6eO7AmQ20QTZIthota7AOoi3-J10XY1QN_jQ5WcvGw4_Pd5jcXV4sq-lofnM1qybzkaKc4JHOKFuTNNNaYaZzpQlkZZnlkmcrnuUEK6pXVKVFiQtWFqAIXzEiFWgmOeOUDpOzQ24tG9HFYtLthJVGTCdzsddwSrOSUPZEIvvrwMaSjz34IB5s79pYT6Q052mG04JFanyglLPeO1gfYwkW-2XEfhlxXCYa-MGwNQ3s_kOLqlpW_7wfESiTTQ</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Khalil, Ibrahim</creator><creator>Celis‐Cornejo, Carlos M.</creator><creator>Thomas, Karine</creator><creator>Bazin, Philippe</creator><creator>Travert, Arnaud</creator><creator>Pérez‐Martínez, David J.</creator><creator>Baldovino‐Medrano, Víctor G.</creator><creator>Paul, Jean François</creator><creator>Maugé, Françoise</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9579-8910</orcidid><orcidid>https://orcid.org/0000-0003-1194-0818</orcidid><orcidid>https://orcid.org/0000-0003-1935-1428</orcidid></search><sort><creationdate>20200220</creationdate><title>In Situ IR‐ATR Study of the Interaction of Nitrogen Heteroaromatic Compounds with HY Zeolites: Experimental and Theoretical Approaches</title><author>Khalil, Ibrahim ; Celis‐Cornejo, Carlos M. ; Thomas, Karine ; Bazin, Philippe ; Travert, Arnaud ; Pérez‐Martínez, David J. ; Baldovino‐Medrano, Víctor G. ; Paul, Jean François ; Maugé, Françoise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3910-d438f124ddc08d5cd1e47745a94b94510c3db3c26706876ec19b81aced8a98933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brønsted acidity</topic><topic>Chemical Sciences</topic><topic>Continuous flow</topic><topic>Density functional theory</topic><topic>Heterocyclic compounds</topic><topic>Hydrocracking</topic><topic>Infrared spectroscopy</topic><topic>liquid-solid interface</topic><topic>molecular modeling</topic><topic>Nitrogen</topic><topic>organonitrogen compounds</topic><topic>Refineries</topic><topic>silanol group</topic><topic>Spectrum analysis</topic><topic>Vapor phases</topic><topic>Vapor pressure</topic><topic>Wavelengths</topic><topic>zeolite</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalil, Ibrahim</creatorcontrib><creatorcontrib>Celis‐Cornejo, Carlos M.</creatorcontrib><creatorcontrib>Thomas, Karine</creatorcontrib><creatorcontrib>Bazin, Philippe</creatorcontrib><creatorcontrib>Travert, Arnaud</creatorcontrib><creatorcontrib>Pérez‐Martínez, David J.</creatorcontrib><creatorcontrib>Baldovino‐Medrano, Víctor G.</creatorcontrib><creatorcontrib>Paul, Jean François</creatorcontrib><creatorcontrib>Maugé, Françoise</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalil, Ibrahim</au><au>Celis‐Cornejo, Carlos M.</au><au>Thomas, Karine</au><au>Bazin, Philippe</au><au>Travert, Arnaud</au><au>Pérez‐Martínez, David J.</au><au>Baldovino‐Medrano, Víctor G.</au><au>Paul, Jean François</au><au>Maugé, Françoise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ IR‐ATR Study of the Interaction of Nitrogen Heteroaromatic Compounds with HY Zeolites: Experimental and Theoretical Approaches</atitle><jtitle>ChemCatChem</jtitle><date>2020-02-20</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>1095</spage><epage>1108</epage><pages>1095-1108</pages><issn>1867-3880</issn><issn>1867-3899</issn><eissn>1867-3899</eissn><abstract>In the present work, the liquid‐solid interaction of liquid N‐heteroaromatic compounds, commonly present in the petroleum feedstocks of the refineries, with Y zeolites used as hydrocracking catalysts was followed using IR‐ATR spectroscopy. The inhibition of the zeolitic acid sites by strongly basic pyridine and weakly basic indole was highlighted using a continuous flow IR‐ATR cell. Results were assessed by Density Functional Theory calculations to compute the vibrational frequencies of pyridine and indole according to the nature of the interaction sites: silanol groups or acidic OH groups. The study points out that IR‐ATR spectroscopy opens the way for investigating the interaction modes of low vapor pressure molecules (e. g. indole) that present an inherent difficulty to be operated in the gas phase. Moreover, the IR‐ATR makes possible the analysis of the little‐explored low wavenumber zone (&lt;800 cm−1), that presents informative vibrational modes on the adsorption mode of N‐molecules. Hence, this work points out that for pyridine, the bands at 686 and 727 cm−1 are characteristic of pyridinium species formed over zeolitic OH groups, meanwhile, the signals at 703 and 750 cm−1, are associated to pyridine in interaction with silanol groups. The IR‐ATR study reveals that indole, a weakly basic compound, can be protonated on acidic Y zeolites as unambiguously evidenced by the formation of the bands at 1617, 1608, 1543 and 705 cm−1. Findings here exposed are crucial for studying inhibitory effects exerted by weak nitrogenated compounds on acidic materials during hydrocracking processes. Molecular modelling: The interaction modes leading to inhibit the hydrocracking catalysts (e. g. zeolites) by the weakly basic nitrogenates, such as indole, were not yet fully understood. The low vapor pressure of these molecules was presenting the inherent difficulty to their study in the gas phase setups. In this work we evidenced, by combining liquid‐solid IR‐ATR experiments with Density Functional Theory calculations, the vibrational frequencies of the different interaction modes of pyridine and indole with the zeolitic acid sites.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201901560</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9579-8910</orcidid><orcidid>https://orcid.org/0000-0003-1194-0818</orcidid><orcidid>https://orcid.org/0000-0003-1935-1428</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2020-02, Vol.12 (4), p.1095-1108
issn 1867-3880
1867-3899
1867-3899
language eng
recordid cdi_hal_primary_oai_HAL_hal_02347138v1
source Access via Wiley Online Library
subjects Brønsted acidity
Chemical Sciences
Continuous flow
Density functional theory
Heterocyclic compounds
Hydrocracking
Infrared spectroscopy
liquid-solid interface
molecular modeling
Nitrogen
organonitrogen compounds
Refineries
silanol group
Spectrum analysis
Vapor phases
Vapor pressure
Wavelengths
zeolite
Zeolites
title In Situ IR‐ATR Study of the Interaction of Nitrogen Heteroaromatic Compounds with HY Zeolites: Experimental and Theoretical Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20IR%E2%80%90ATR%20Study%20of%20the%20Interaction%20of%20Nitrogen%20Heteroaromatic%20Compounds%20with%20HY%20Zeolites:%20Experimental%20and%20Theoretical%20Approaches&rft.jtitle=ChemCatChem&rft.au=Khalil,%20Ibrahim&rft.date=2020-02-20&rft.volume=12&rft.issue=4&rft.spage=1095&rft.epage=1108&rft.pages=1095-1108&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201901560&rft_dat=%3Cproquest_hal_p%3E2359240268%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359240268&rft_id=info:pmid/&rfr_iscdi=true