In Situ IR‐ATR Study of the Interaction of Nitrogen Heteroaromatic Compounds with HY Zeolites: Experimental and Theoretical Approaches

In the present work, the liquid‐solid interaction of liquid N‐heteroaromatic compounds, commonly present in the petroleum feedstocks of the refineries, with Y zeolites used as hydrocracking catalysts was followed using IR‐ATR spectroscopy. The inhibition of the zeolitic acid sites by strongly basic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2020-02, Vol.12 (4), p.1095-1108
Hauptverfasser: Khalil, Ibrahim, Celis‐Cornejo, Carlos M., Thomas, Karine, Bazin, Philippe, Travert, Arnaud, Pérez‐Martínez, David J., Baldovino‐Medrano, Víctor G., Paul, Jean François, Maugé, Françoise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, the liquid‐solid interaction of liquid N‐heteroaromatic compounds, commonly present in the petroleum feedstocks of the refineries, with Y zeolites used as hydrocracking catalysts was followed using IR‐ATR spectroscopy. The inhibition of the zeolitic acid sites by strongly basic pyridine and weakly basic indole was highlighted using a continuous flow IR‐ATR cell. Results were assessed by Density Functional Theory calculations to compute the vibrational frequencies of pyridine and indole according to the nature of the interaction sites: silanol groups or acidic OH groups. The study points out that IR‐ATR spectroscopy opens the way for investigating the interaction modes of low vapor pressure molecules (e. g. indole) that present an inherent difficulty to be operated in the gas phase. Moreover, the IR‐ATR makes possible the analysis of the little‐explored low wavenumber zone (
ISSN:1867-3880
1867-3899
1867-3899
DOI:10.1002/cctc.201901560