Combining point‐process and landscape vegetation models to predict large herbivore distributions in space and time—A case study of Rupicapra rupicapra
Aim When modelling the distribution of animals under current and future conditions, both their response to environmental constraints and their resources’ response to these environmental constraints need to be taken into account. Here, we develop a framework to predict the distribution of large herbi...
Gespeichert in:
Veröffentlicht in: | Diversity & distributions 2018-03, Vol.24 (3), p.352-362 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aim
When modelling the distribution of animals under current and future conditions, both their response to environmental constraints and their resources’ response to these environmental constraints need to be taken into account. Here, we develop a framework to predict the distribution of large herbivores under global change, while accounting for changes in their main resources. We applied it to Rupicapra rupicapra, the chamois of the European Alps.
Location
The Bauges Regional Park (French Alps).
Methods
We built sixteen plant functional groups (PFGs) that account for the chamois’ diet (estimated from sequenced environmental DNA found in the faeces), climatic requirements, dispersal limitations, successional stage and interaction for light. These PFGs were then simulated using a dynamic vegetation model, under current and future climatic conditions up to 2100. Finally, we modelled the spatial distribution of the chamois under both current and future conditions using a point‐process model applied to either climate‐only variables or climate and simulated vegetation structure variables.
Results
Both the climate‐only and the climate and vegetation models successfully predicted the current distribution of the chamois species. However, when applied into the future, the predictions differed widely. While the climate‐only models predicted an 80% decrease in total species occupancy, including vegetation structure and plant resources for chamois in the model provided more optimistic predictions because they account for the transient dynamics of the vegetation (−20% in species occupancy).
Main conclusions
Applying our framework to the chamois shows that the inclusion of ecological mechanisms (i.e., plant resources) produces more realistic predictions under current conditions and should prove useful for anticipating future impacts. We have shown that discounting the pure effects of vegetation on chamois might lead to overpessimistic predictions under climate change. Our approach paves the way for improved synergies between different fields to produce biodiversity scenarios. |
---|---|
ISSN: | 1366-9516 1472-4642 |
DOI: | 10.1111/ddi.12684 |