Percolation of the excursion sets of planar symmetric shot noise fields

We prove the existence of phase transitions in the global connectivity of the excursion sets of planar symmetric shot noise fields. Our main result establishes a phase transition with respect to the level for shot noise fields with symmetric log-concave mark distributions, including Gaussian, unifor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic processes and their applications 2022-05, Vol.147, p.175-209
Hauptverfasser: Lachieze-Rey, Raphael, Muirhead, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the existence of phase transitions in the global connectivity of the excursion sets of planar symmetric shot noise fields. Our main result establishes a phase transition with respect to the level for shot noise fields with symmetric log-concave mark distributions, including Gaussian, uniform, and Laplace marks, and kernels that are positive, symmetric, and have sufficient tail decay. Without the log-concavity assumption we prove a phase transition with respect to the intensity of positive marks.
ISSN:0304-4149
1879-209X
DOI:10.1016/j.spa.2022.01.013