Inventory and distribution of tritium in the oceans in 2016

Tritium concentrations in oceans were compiled from the literature, online databases and original measurements in order to determine the global distribution of tritium concentrations according to latitude and depth in all oceans. The total inventory of tritium decay corrected in 2016 has been estima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-03, Vol.656, p.1289-1303
Hauptverfasser: Oms, Pierre-Emmanuel, Bailly du Bois, Pascal, Dumas, Franck, Lazure, Pascal, Morillon, Mehdi, Voiseux, Claire, Le Corre, Cedric, Cossonnet, Catherine, Solier, Luc, Morin, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tritium concentrations in oceans were compiled from the literature, online databases and original measurements in order to determine the global distribution of tritium concentrations according to latitude and depth in all oceans. The total inventory of tritium decay corrected in 2016 has been estimated using evaluation of the natural and artificial contributions in 23 spatial subdivisions of the total ocean. It is determined equal to 26.8 ± 14 kg including 3.8 kg of cosmogenic tritium. That is in agreement with the total atmospheric input of tritium from nuclear bomb tests and the natural inventory at steady-state estimated from natural production rates in the literature (27.8–29.3 kg in the Earth). We confirm the global increase in tritium according to latitude observed in the Northern hemisphere since 1967 with a maximum in the Arctic Ocean. The minimum tritium concentrations observed in the Southern Ocean were close to steady-state with known natural tritium deposition. We focused on the temporal evolution of surface (0 to 500 m) tritium concentrations in a selected area of the North Atlantic Ocean (30°N–60°N) where we found the 2016 concentration to be 0.60 ± 0.10 TU (1σ). Results showed that in that area, between 1988 and 2013, tritium concentrations: i) decreased faster than the sole radioactive decay, due to a mixing with lower and lateral less concentrated waters, and ii) decreased towards an apparent steady state concentration. The half-time mixing rate of surface waters and the steady state concentration were respectively calculated to be 23 ± 5 years (1σ) and 0.38 ± 0.07 TU (1σ). This apparent steady-state concentration in the North Atlantic Ocean implies a mean tritium deposition of 1870 ± 345 Bq·m−2 (1σ), five folds higher than the known inputs (natural, nuclear tests fallout and industrial releases, ~367 Bq·m−2) in this area. [Display omitted] •A database of tritium concentrations available in oceans has been gathered.•Inventory of oceanic tritium has been calculated.•North-Atlantic Ocean tritium background concentration has been estimated.•The Antarctic Ocean is at an apparent steady-state with the natural production rate.•The North-Atlantic Ocean concentration exhibits an underestimation of known sources.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2018.11.448