On Well-Posedness of Scattering Problems in a Kirchhoff--Love Infinite Plate

We address scattering problems for impenetrable obstacles in an infinite elastic Kirchhoff-Love two-dimensional plate. The analysis is restricted to the purely bending case and the time-harmonic regime. Considering four types of boundary conditions on the obstacle, well-posedness for those problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 2020-01, Vol.80 (3), p.1546-1566
Hauptverfasser: Bourgeois, Laurent, Hazard, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address scattering problems for impenetrable obstacles in an infinite elastic Kirchhoff-Love two-dimensional plate. The analysis is restricted to the purely bending case and the time-harmonic regime. Considering four types of boundary conditions on the obstacle, well-posedness for those problems is proved with the help of a variational approach: (i) for any wave number k when the plate is clamped, simply supported or roller supported; (ii) for any k except a discrete set when the plate is free (this set is finite for convex obstacles).
ISSN:0036-1399
1095-712X
DOI:10.1137/19M1295660