AQUALOC: An underwater dataset for visual–inertial–pressure localization
We present a new dataset, dedicated to the development of simultaneous localization and mapping methods for underwater vehicles navigating close to the seabed. The data sequences composing this dataset are recorded in three different environments: a harbor at a depth of a few meters, a first archeol...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2019-12, Vol.38 (14), p.1549-1559 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new dataset, dedicated to the development of simultaneous localization and mapping methods for underwater vehicles navigating close to the seabed. The data sequences composing this dataset are recorded in three different environments: a harbor at a depth of a few meters, a first archeological site at a depth of 270 meters, and a second site at a depth of 380 meters. The data acquisition is performed using remotely operated vehicles equipped with a monocular monochromatic camera, a low-cost inertial measurement unit, a pressure sensor, and a computing unit, all embedded in a single enclosure. The sensors’ measurements are recorded synchronously on the computing unit and 17 sequences have been created from all the acquired data. These sequences are made available in the form of ROS bags and as raw data. For each sequence, a trajectory has also been computed offline using a structure-from-motion library in order to allow the comparison with real-time localization methods. With the release of this dataset, we wish to provide data difficult to acquire and to encourage the development of vision-based localization methods dedicated to the underwater environment. The dataset can be downloaded from: http://www.lirmm.fr/aqualoc/ |
---|---|
ISSN: | 0278-3649 1741-3176 |
DOI: | 10.1177/0278364919883346 |